4AUU

Crystal structure of apo FimH lectin domain at 1.5 A resolution


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.184 
  • R-Value Work: 0.157 
  • R-Value Observed: 0.158 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

The Tyrosine Gate as a Potential Entropic Lever in the Receptor-Binding Site of the Bacterial Adhesin Fimh.

Wellens, A.Lahmann, M.Touaibia, M.Vaucher, J.Oscarson, S.Roy, R.Remaut, H.Bouckaert, J.

(2012) Biochemistry 51: 4790

  • DOI: 10.1021/bi300251r
  • Primary Citation of Related Structures:  
    4AVH, 4AUY, 4AV4, 4AV5, 4AUU, 4AV0, 4AVI, 4AVJ, 4AVK

  • PubMed Abstract: 
  • Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections. During infection, UPEC adhere to mannosylated glycoreceptors on the urothelium via the FimH adhesin located at the tip of type 1 pili. Synthetic FimH an ...

    Uropathogenic Escherichia coli (UPEC) are the major causative agents of urinary tract infections. During infection, UPEC adhere to mannosylated glycoreceptors on the urothelium via the FimH adhesin located at the tip of type 1 pili. Synthetic FimH antiadhesives such as alkyl and phenyl α-D-mannopyranosides are thus ideal candidates for the chemical interception of this crucial step in pathogenesis. The crystal structures of the FimH lectin domain in its ligand-free form and in complexes with eight medium- and high-affinity mannopyranoside inhibitors are presented. The thermodynamic profiles of the FimH-inhibitor interactions indicate that the binding of FimH to α-D-mannopyranose is enthalpy-driven and has a negative entropic change. Addition of a hydrophobic aglycon influences the binding enthalpy and can induce a favorable entropic change. The alleviation of the entropic cost is at least in part explained by increased dynamics in the tyrosine gate (Tyr48 and Tyr137) of the FimH receptor-binding site upon binding of the ligand. Ligands with a phenyl group directly linked to the anomeric oxygen of α-D-mannose introduce the largest dynamics into the Tyr48 side chain, because conjugation with the anomeric oxygen of α-D-mannose forces the aromatic aglycon into a conformation that comes into close contact (≈2.65 Å) with Tyr48. A propargyl group in this position predetermines the orientation of the aglycon and significantly decreases affinity. FimH has the highest affinity for α-D-mannopyranosides substituted with hydrophobic aglycons that are compatible in shape and electrostatic properties to the tyrosine gate, such as heptyl α-D-mannose.


    Organizational Affiliation

    Structural Molecular Microbiology, Vrije Universiteit Brussel, VIB, Brussels, Belgium.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
FIMHAB158Escherichia coli BL21(DE3)Mutation(s): 0 
Find proteins for P08191 (Escherichia coli (strain K12))
Explore P08191 
Go to UniProtKB:  P08191
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
EDO
Query on EDO

Download CCD File 
A, B
1,2-ETHANEDIOL
C2 H6 O2
LYCAIKOWRPUZTN-UHFFFAOYSA-N
 Ligand Interaction
NI
Query on NI

Download CCD File 
A, B
NICKEL (II) ION
Ni
VEQPNABPJHWNSG-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Free: 0.184 
  • R-Value Work: 0.157 
  • R-Value Observed: 0.158 
  • Space Group: P 31 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 91.046α = 90
b = 91.046β = 90
c = 79.331γ = 120
Software Package:
Software NamePurpose
PHENIXrefinement
XDSdata reduction
XSCALEdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2012-06-27
    Type: Initial release
  • Version 1.1: 2012-07-18
    Changes: Atomic model, Derived calculations, Other
  • Version 1.2: 2012-09-05
    Changes: Database references