3OLW

Structural and functional effects of substitution at position T+1 in CheY: CheYA88T-BeF3-Mn complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.304 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.180 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

A Variable Active Site Residue Influences the Kinetics of Response Regulator Phosphorylation and Dephosphorylation.

Immormino, R.M.Silversmith, R.E.Bourret, R.B.

(2016) Biochemistry 55: 5595-5609

  • DOI: 10.1021/acs.biochem.6b00645
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Two-component regulatory systems, minimally composed of a sensor kinase and a response regulator protein, are common mediators of signal transduction in microorganisms. All response regulators contain a receiver domain with conserved active site resi ...

    Two-component regulatory systems, minimally composed of a sensor kinase and a response regulator protein, are common mediators of signal transduction in microorganisms. All response regulators contain a receiver domain with conserved active site residues that catalyze the signal activating and deactivating phosphorylation and dephosphorylation reactions. We explored the impact of variable active site position T+1 (one residue C-terminal to the conserved Thr/Ser) on reaction kinetics and signaling fidelity, using wild type and mutant Escherichia coli CheY, CheB, and NarL to represent the three major sequence classes observed across response regulators: Ala/Gly, Ser/Thr, and Val/Ile/Met, respectively, at T+1. Biochemical and structural data together suggested that different amino acids at T+1 impacted reaction kinetics by altering access to the active site while not perturbing overall protein structure. A given amino acid at position T+1 had similar effects on autodephosphorylation in each protein background tested, likely by modulating access of the attacking water molecule to the active site. Similarly, rate constants for CheY autophosphorylation with three different small molecule phosphodonors were consistent with the steric constraints on access to the phosphorylation site arising from combination of specific phosphodonors with particular amino acids at T+1. Because other variable active site residues also influence response regulator phosphorylation biochemistry, we began to explore how context (here, the amino acid at T+2) affected the influence of position T+1 on CheY autocatalytic reactions. Finally, position T+1 affected the fidelity and kinetics of phosphotransfer between sensor kinases and response regulators but was not a primary determinant of their interaction.


    Organizational Affiliation

    Department of Microbiology and Immunology, University of North Carolina , Chapel Hill, North Carolina 27599-7290, United States.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Chemotaxis protein CheY
A, B
129Escherichia coli (strain K12)Mutation(s): 1 
Gene Names: cheY
Find proteins for P0AE67 (Escherichia coli (strain K12))
Go to UniProtKB:  P0AE67
Small Molecules
Ligands 5 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
MN
Query on MN

Download SDF File 
Download CCD File 
A, B
MANGANESE (II) ION
Mn
WAEMQWOKJMHJLA-UHFFFAOYSA-N
 Ligand Interaction
SO4
Query on SO4

Download SDF File 
Download CCD File 
B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
CL
Query on CL

Download SDF File 
Download CCD File 
A
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
GOL
Query on GOL

Download SDF File 
Download CCD File 
A, B
GLYCEROL
GLYCERIN; PROPANE-1,2,3-TRIOL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
BEF
Query on BEF

Download SDF File 
Download CCD File 
A, B
BERYLLIUM TRIFLUORIDE ION
Be F3
OGIAHMCCNXDTIE-UHFFFAOYSA-K
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.304 Å
  • R-Value Free: 0.222 
  • R-Value Work: 0.180 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 54.033α = 90.00
b = 53.731β = 90.00
c = 161.804γ = 90.00
Software Package:
Software NamePurpose
HKL-2000data collection
PHASERphasing
HKL-2000data scaling
HKL-2000data reduction
PHENIXrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-08-31
    Type: Initial release
  • Version 1.1: 2016-09-21
    Type: Database references
  • Version 1.2: 2016-10-19
    Type: Database references