3KVN

Crystal structure of the full-length autotransporter EstA from Pseudomonas aeruginosa


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.206 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Crystal structure of a full-length autotransporter.

van den Berg, B.

(2010) J Mol Biol 396: 627-633

  • DOI: 10.1016/j.jmb.2009.12.061
  • Primary Citation of Related Structures:  
    3KVN

  • PubMed Abstract: 
  • The autotransporter (AT) secretion mechanism is the most common mechanism for the secretion of virulence factors across the outer membrane (OM) from pathogenic Gram-negative bacteria. In addition, ATs have attracted biotechnological and biomedical in ...

    The autotransporter (AT) secretion mechanism is the most common mechanism for the secretion of virulence factors across the outer membrane (OM) from pathogenic Gram-negative bacteria. In addition, ATs have attracted biotechnological and biomedical interest for protein display on bacterial cell surfaces. Despite their importance, the mechanism by which passenger domains of ATs pass the OM is still unclear. The classical view is that the beta-barrel domain provides the conduit through which the unfolded passenger moves, with the energy provided by vectorial folding of the beta-strand-rich passenger on the extracellular side of the OM. We present here the first structure of a full-length AT, the esterase EstA from Pseudomonas aeruginosa, at a resolution of 2.5 A. EstA has a relatively narrow, 12-stranded beta-barrel that is covalently attached to the passenger domain via a long, curved helix that occupies the lumen of the beta-barrel. The passenger has a structure that is dramatically different from that of other known passengers, with a globular fold that is dominated by alpha-helices and loops. The arrangement of secondary-structure elements suggests that the passenger can fold sequentially, providing the driving force for passenger translocation. The esterase active-site residues are located at the apical surface of the passenger, at the entrance of a large hydrophobic pocket that contains a bound detergent molecule that likely mimics substrate. The EstA structure provides insight into AT mechanism and will facilitate the design of fusion proteins for cell surface display.


    Organizational Affiliation

    Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA. bert.vandenberg@umassmed.edu



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Esterase estAA, X632Pseudomonas aeruginosaMutation(s): 0 
Gene Names: estApapAPA5112
EC: 3.1.1.1
Membrane protein
Mpstruc
Group: 
TRANSMEMBRANE PROTEINS: BETA-BARREL
Sub Group: 
Outer Membrane Autotransporters
Protein: 
EstA Autotransporter, full length
Find proteins for O33407 (Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1))
Explore O33407 
Go to UniProtKB:  O33407
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
C8E
Query on C8E

Download CCD File 
A, X
(HYDROXYETHYLOXY)TRI(ETHYLOXY)OCTANE
C16 H34 O5
FEOZZFHAVXYAMB-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.255 
  • R-Value Work: 0.204 
  • R-Value Observed: 0.206 
  • Space Group: P 4 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 143.826α = 90
b = 143.826β = 90
c = 186.883γ = 90
Software Package:
Software NamePurpose
CBASSdata collection
SOLVEphasing
PHENIXrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Deposited Date: 2009-11-30 
  • Released Date: 2010-01-26 
  • Deposition Author(s): van den Berg, B.

Revision History 

  • Version 1.0: 2010-01-26
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance