3KND

TPX2:importin-alpha complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.185 

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Novel binding of the mitotic regulator TPX2 (target protein for Xenopus kinesin-like protein 2) to importin-alpha.

Giesecke, A.Stewart, M.

(2010) J Biol Chem 285: 17628-17635

  • DOI: https://doi.org/10.1074/jbc.M110.102343
  • Primary Citation of Related Structures:  
    3KND

  • PubMed Abstract: 

    Several aspects of mitotic spindle assembly are orchestrated by the Ran GTPase through its modulation of the interaction between spindle assembly factors and importin-alpha. One such factor is TPX2 that promotes microtubule assembly in the vicinity of chromosomes. TPX2 is inhibited when bound to importin-alpha, which occurs when the latter is bound to importin-beta. The importin-alpha:beta interaction is disrupted by the high RanGTP concentration near the chromosomes, releasing TPX2. In more distal regions, where Ran is predominantly GDP-bound, TPX2 remains bound to importin-alpha and so is inhibited. Here we use a combination of structural and biochemical methods to define the basis for TPX2 binding to importin-alpha. A 2.2 A resolution crystal structure shows that the primary nuclear localization signal ((284)KRKH(287)) of TPX2, which has been shown to be crucial for inhibition, binds to the minor NLS-binding site on importin-alpha. This atypical interaction pattern was confirmed using complementary binding studies that employed importin-alpha variants in which binding to either the major or minor NLS-binding site was impaired, together with competition assays using the SV40 monopartite NLS that binds primarily to the major site. The different way in which TPX2 binds to importin-alpha could account for much of the selectivity necessary during mitosis because this would reduce the competition for binding to importin-alpha from other NLS-containing proteins.


  • Organizational Affiliation

    Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Importin subunit alpha-2460Mus musculusMutation(s): 0 
Gene Names: importin alpha 2Kpna2Rch1
UniProt & NIH Common Fund Data Resources
Find proteins for P52293 (Mus musculus)
Explore P52293 
Go to UniProtKB:  P52293
IMPC:  MGI:103561
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP52293
Sequence Annotations
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChains Sequence LengthOrganismDetailsImage
Targeting protein for Xklp281Xenopus laevisMutation(s): 0 
Gene Names: TPX2
UniProt
Find proteins for Q6NUF4 (Xenopus laevis)
Explore Q6NUF4 
Go to UniProtKB:  Q6NUF4
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ6NUF4
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.185 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 78.527α = 90
b = 89.317β = 90
c = 99.273γ = 90
Software Package:
Software NamePurpose
ADSCdata collection
PHENIXrefinement
MOSFLMdata reduction
SCALAdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

  • Released Date: 2010-03-23 
  • Deposition Author(s): Stewart, M.

Revision History  (Full details and data files)

  • Version 1.0: 2010-03-23
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2012-12-26
    Changes: Database references
  • Version 1.3: 2017-11-01
    Changes: Refinement description
  • Version 1.4: 2023-09-06
    Changes: Data collection, Database references, Derived calculations, Refinement description