3JZ3

Structure of the cytoplasmic segment of histidine kinase QseC


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.228 
  • R-Value Observed: 0.230 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structure of the Cytoplasmic Segment of Histidine Kinase Receptor QseC, a Key Player in Bacterial Virulence.

Xie, W.Dickson, C.Kwiatkowski, W.Choe, S.

(2010) Protein Pept Lett 17: 1383-1391

  • DOI: 10.2174/0929866511009011383
  • Primary Citation of Related Structures:  
    3JZ3

  • PubMed Abstract: 
  • QseC is a histidine kinase (HK) receptor involved in quorum sensing, a mechanism by which bacteria respond to fluctuations in cell population. We conducted a structural study of the cytoplasmic domain of QseC (QseC-CD) using X-ray crystallography. The 2.5 Å structure of the apo-enzyme revealed that the kinase domain of QseC retains the overall fold of the typical HK kinase domain ...

    QseC is a histidine kinase (HK) receptor involved in quorum sensing, a mechanism by which bacteria respond to fluctuations in cell population. We conducted a structural study of the cytoplasmic domain of QseC (QseC-CD) using X-ray crystallography. The 2.5 Å structure of the apo-enzyme revealed that the kinase domain of QseC retains the overall fold of the typical HK kinase domain. The construct that we used is inactive in the autokinase reaction and its inactivity is most likely caused by its atypical dimerization interface, as compared to that observed in the T.maritima HK cytoplasmic domain structure. Restoration of the activity may require that the entire dimerization domain be present in the protein construct. QseC, which plays an important role in bacterial pathogenesis, is a promising drug target and the structure of QseC-CD provides a platform for developing more potent inhibitors of pathogen virulence.


    Organizational Affiliation

    Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Sensor protein qseCA, B222Escherichia coli K-12Mutation(s): 0 
Gene Names: qseCygiYb3026JW2994
EC: 2.7.13.3
Find proteins for P40719 (Escherichia coli (strain K12))
Explore P40719 
Go to UniProtKB:  P40719
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download Ideal Coordinates CCD File 
C [auth B]SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MSE
Query on MSE
A, BL-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.228 
  • R-Value Observed: 0.230 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 70.737α = 90
b = 70.737β = 90
c = 176.573γ = 90
Software Package:
Software NamePurpose
HKL-2000data collection
SOLVEphasing
REFMACrefinement
HKL-2000data reduction
HKL-2000data scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2010-07-21
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2012-04-04
    Changes: Database references