3J68

Structural mechanism of the dynein powerstroke (pre-powerstroke state)


Experimental Data Snapshot

  • Method: ELECTRON MICROSCOPY
  • Resolution: 30 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: TOMOGRAPHY 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structural mechanism of the dynein power stroke.

Lin, J.Okada, K.Raytchev, M.Smith, M.C.Nicastro, D.

(2014) Nat.Cell Biol. 16: 479-485

  • DOI: 10.1038/ncb2939
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Dyneins are large microtubule motor proteins required for mitosis, intracellular transport and ciliary and flagellar motility. They generate force through a power-stroke mechanism, which is an ATP-consuming cycle of pre- and post-power-stroke conform ...

    Dyneins are large microtubule motor proteins required for mitosis, intracellular transport and ciliary and flagellar motility. They generate force through a power-stroke mechanism, which is an ATP-consuming cycle of pre- and post-power-stroke conformational changes that cause relative motion between different dynein domains. However, key structural details of dynein's force generation remain elusive. Here, using cryo-electron tomography of intact, active (that is, beating), rapidly frozen sea urchin sperm flagella, we determined the in situ three-dimensional structures of all domains of both pre- and post-power-stroke dynein, including the previously unresolved linker and stalk of pre-power-stroke dynein. Our results reveal that the rotation of the head relative to the linker is the key action in dynein movement, and that there are at least two distinct pre-power-stroke conformations: pre-I (microtubule-detached) and pre-II (microtubule-bound). We provide three-dimensional reconstructions of native dyneins in three conformational states, in situ, allowing us to propose a molecular model of the structural cycle underlying dynein movement.


    Organizational Affiliation

    Biology Department and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham Massachusetts 02454-9110, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Dynein motor domain
A
2286Saccharomyces cerevisiae (strain ATCC 204508 / S288c)Mutation(s): 0 
Gene Names: DYN1 (DHC1)
Find proteins for P36022 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Go to UniProtKB:  P36022
Experimental Data & Validation

Experimental Data

  • Method: ELECTRON MICROSCOPY
  • Resolution: 30 Å
  • Aggregation State: PARTICLE 
  • Reconstruction Method: TOMOGRAPHY 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2014-04-23
    Type: Initial release
  • Version 1.1: 2014-05-21
    Type: Database references
  • Version 1.2: 2018-07-18
    Type: Data collection