3IAZ

Structural basis of the prevention of NSAID-induced damage of the gastrointestinal tract by C-terminal half (C-lobe) of bovine colostrum protein lactoferrin: Binding and structural studies of the C-lobe complex with aspirin


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.184 

wwPDB Validation 3D Report Full Report



Literature

The structural basis for the prevention of nonsteroidal antiinflammatory drug-induced gastrointestinal tract damage by the C-lobe of bovine colostrum lactoferrin

Mir, R.Singh, N.Vikram, G.Kumar, R.P.Sinha, M.Bhushan, A.Kaur, P.Srinivasan, A.Sharma, S.Singh, T.P.

(2009) Biophys J 97: 3178-3186

  • DOI: 10.1016/j.bpj.2009.09.030
  • Structures With Same Primary Citation

  • PubMed Abstract: 
  • Nonsteroidal antiinflammatory drugs (NSAIDs), due to their good efficacy in the treatment of pain, inflammation, and fever, are among the most prescribed class of medicines in the world. The main drawback of NSAIDs is that they induce gastric complic ...

    Nonsteroidal antiinflammatory drugs (NSAIDs), due to their good efficacy in the treatment of pain, inflammation, and fever, are among the most prescribed class of medicines in the world. The main drawback of NSAIDs is that they induce gastric complications such as peptic ulceration and injury to the intestine. Four NSAIDs, indomethacin, diclofenac, aspirin, and ibuprofen were selected to induce gastropathy in mouse models. It was found that the addition of C-terminal half of bovine lactoferrin (C-lobe) reversed the NSAID-induced injuries to the extent of 47-70% whereas the coadministration of C-lobe prevented it significantly. The C-lobe was prepared proteolytically using serine proteases. The binding studies of C-lobe with NSAIDs showed that these compounds bind to C-lobe with affinities ranging from 2.6 to 4.8 x 10(-4) M. The complexes of C-lobe were prepared with the above four NSAIDs. All four complexes were crystallized and their detailed three-dimensional structures were determined using x-ray crystallographic method. The structures showed that all the four NSAID molecules bound to C-lobe at the newly identified ligand binding site in C-lobe that is formed involving two alpha-helices, alpha10 and alpha11. The ligand binding site is separated from the well known iron binding site by the longest and the most stable beta-strand, betaj, in the structure. Similar results were also obtained with the full length lactoferrin molecule. This novel, to our knowledge, binding site in C-lobe of lactoferrin shows a good complementarity for the acidic and lipophilic compounds such as NSAIDs. We believe this indicates that C-lobe of lactoferrin can be exploited for the prevention of NSAID-induced gastropathy.


    Organizational Affiliation

    Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.



Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
LactotransferrinA345Bos taurusMutation(s): 0 
Gene Names: LTF
EC: 3.4.21
Find proteins for P24627 (Bos taurus)
Explore P24627 
Go to UniProtKB:  P24627
Protein Feature View
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Oligosaccharides
Entity ID: 2
MoleculeChainsChain Length2D Diagram Glycosylation
2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
B
2 N-Glycosylation
Entity ID: 3
MoleculeChainsChain Length2D Diagram Glycosylation
beta-D-mannopyranose-(1-4)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-alpha-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
C
5 N-Glycosylation
Entity ID: 4
MoleculeChainsChain Length2D Diagram Glycosylation
alpha-D-mannopyranose-(1-4)-beta-D-mannopyranose-(1-4)-beta-D-mannopyranose-(1-4)-alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose
D
6 N-Glycosylation
Small Molecules
Ligands 6 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
AIN
Query on AIN

Download CCD File 
A
2-(ACETYLOXY)BENZOIC ACID
C9 H8 O4
BSYNRYMUTXBXSQ-UHFFFAOYSA-N
 Ligand Interaction
SO4
Query on SO4

Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
ZN
Query on ZN

Download CCD File 
A
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
CO3
Query on CO3

Download CCD File 
A
CARBONATE ION
C O3
BVKZGUZCCUSVTD-UHFFFAOYSA-L
 Ligand Interaction
FE
Query on FE

Download CCD File 
A
FE (III) ION
Fe
VTLYFUHAOXGGBS-UHFFFAOYSA-N
 Ligand Interaction
EOH
Query on EOH

Download CCD File 
A
ETHANOL
C2 H6 O
LFQSCWFLJHTTHZ-UHFFFAOYSA-N
 Ligand Interaction
External Ligand Annotations 
IDBinding Affinity (Sequence Identity %)
AINKd:  330000   nM  Binding MOAD
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.00 Å
  • R-Value Free: 0.228 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.184 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 63.308α = 90
b = 50.469β = 107.7
c = 65.942γ = 90
Software Package:
Software NamePurpose
MAR345dtbdata collection
AMoREphasing
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-08-11
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.2: 2018-08-01
    Changes: Data collection, Database references, Source and taxonomy, Structure summary
  • Version 1.3: 2018-08-15
    Changes: Data collection, Database references, Source and taxonomy, Structure summary
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Advisory, Atomic model, Data collection, Derived calculations, Structure summary