3C2Y

tRNA-Guanine Transglycosylase (TGT) in complex with 6-Amino-2-methyl-1,7-dihydro-imidazo[4,5-g]quinazolin-8-one


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.78 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.162 
  • R-Value Observed: 0.164 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.2 of the entry. See complete history


Literature

Crystal structure analysis and in silico pKa calculations suggest strong pKa shifts of ligands as driving force for high-affinity binding to TGT

Ritschel, T.Hoertner, S.Heine, A.Diederich, F.Klebe, G.

(2009) Chembiochem 10: 716-727

  • DOI: https://doi.org/10.1002/cbic.200800782
  • Primary Citation of Related Structures:  
    2Z7K, 3C2Y

  • PubMed Abstract: 

    A novel ligand series is presented to inhibit tRNA-guanine transglycosylase (TGT), a protein with a significant role in the pathogenicity mechanism of Shigella flexneri, the causative agent of Shigellosis. The enzyme exchanges guanine in the wobble position of tRNA(Asn,Asp,His,Tyr) against a modified base. To prevent the base-exchange reaction, several series of inhibitors have already been designed, synthesized, and tested. One aim of previous studies was to address a hydrophobic pocket with different side chains attached to the parent skeletons. Disappointingly, no significant increase in binding affinity could be observed that could be explained by the disruption of a conserved water cluster. The ligand series examined in this study are based on the known scaffold lin-benzoguanine. Different side chains were introduced leading to 2-amino-lin-benzoguanines, which address a different pocket of the protein and avoid disruption of the water cluster. With the introduction of an amino group in the 2-position, a dramatic increase in binding affinity can be experienced. To explain this significant gain in binding affinity, Poisson-Boltzmann calculations were performed to explore pK(a) changes of ligand functional groups upon protein binding, they can differ significantly on going from aqueous solution to protein environment. For all complexes, a permanent protonation of the newly designed ligands is suggested, leading to a charge-assisted hydrogen bond in the protein-ligand complex. This increased strength in hydrogen bonding takes beneficial effect on binding affinity of the ligands, resulting in low-nanomolar binders. Crystal structures and docking emphasize the importance of the newly created charge-assisted hydrogen bond. A detailed analysis of the crystal structures in complex with substituted 2-amino-lin-benzoguanines indicate pronounced disorder of the attached side chains addressing the ribose 33 binding pocket. Docking suggests multiple orientations of these side chains. Obviously, an entropic advantage of the residual mobility experienced by these ligands in the bound state is beneficial and reveals an overall improved protein binding.


  • Organizational Affiliation

    Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, Marburg, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Queuine tRNA-ribosyltransferase386Zymomonas mobilisMutation(s): 0 
Gene Names: TGT
EC: 2.4.2.29
UniProt
Find proteins for P28720 (Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4))
Explore P28720 
Go to UniProtKB:  P28720
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP28720
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Binding Affinity Annotations 
IDSourceBinding Affinity
S60 BindingDB:  3C2Y Ki: 1500 (nM) from 1 assay(s)
Binding MOAD:  3C2Y Ki: 1500 (nM) from 1 assay(s)
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.78 Å
  • R-Value Free: 0.214 
  • R-Value Work: 0.162 
  • R-Value Observed: 0.164 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 90.3α = 90
b = 64.8β = 96
c = 70.3γ = 90
Software Package:
Software NamePurpose
SHELXmodel building
SHELXL-97refinement
CrystalCleardata collection
HKL-2000data reduction
HKL-2000data scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-02-03
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.2: 2023-11-01
    Changes: Data collection, Database references, Derived calculations, Refinement description