3BQH

Structure of the central domain (MsrA) of Neisseria meningitidis PilB (oxidized form)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.193 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

A structural analysis of the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis

Ranaivoson, F.M.Antoine, M.Kauffmann, B.Boschi-Muller, S.Aubry, A.Branlant, G.Favier, F.

(2008) J.Mol.Biol. 377: 268-280

  • DOI: 10.1016/j.jmb.2008.01.021
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The methionine sulfoxide reductases (Msrs) are thioredoxin-dependent oxidoreductases that catalyse the reduction of the sulfoxide function of the oxidized methionine residues. These enzymes have been shown to regulate the life span of a wide range of ...

    The methionine sulfoxide reductases (Msrs) are thioredoxin-dependent oxidoreductases that catalyse the reduction of the sulfoxide function of the oxidized methionine residues. These enzymes have been shown to regulate the life span of a wide range of microbial and animal species and to play the role of physiological virulence determinant of some bacterial pathogens. Two structurally unrelated classes of Msrs exist, MsrA and MsrB, with opposite stereoselectivity towards the R and S isomers of the sulfoxide function, respectively. Both Msrs share a similar three-step chemical mechanism including (1) the formation of a sulfenic acid intermediate on the catalytic Cys with the concomitant release of the product-methionine, (2) the formation of an intramonomeric disulfide bridge between the catalytic and the regenerating Cys and (3) the reduction of the disulfide bridge by thioredoxin or its homologues. In this study, four structures of the MsrA domain of the PilB protein from Neisseria meningitidis, representative of four catalytic intermediates of the MsrA catalytic cycle, were determined by X-ray crystallography: the free reduced form, the Michaelis-like complex, the sulfenic acid intermediate and the disulfide oxidized forms. They reveal a conserved overall structure up to the formation of the sulfenic acid intermediate, while a large conformational switch is observed in the oxidized form. The results are discussed in relation to those proposed from enzymatic, NMR and theoretical chemistry studies. In particular, the substrate specificity and binding, the catalytic scenario of the reductase step and the relevance and role of the large conformational change observed in the oxidized form are discussed.


    Organizational Affiliation

    LCM3B, Equipe Biocristallographie, UMR 7036 CNRS-UHP, Faculté des Sciences et Techniques, Nancy Université, BP 239, 54506 Vandoeuvre-les-Nancy, France.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Peptide methionine sulfoxide reductase msrA/msrB
A
193Neisseria meningitidis serogroup A / serotype 4A (strain Z2491)Mutation(s): 0 
Gene Names: msrAB (pilB)
Find proteins for Q9JWM8 (Neisseria meningitidis serogroup A / serotype 4A (strain Z2491))
Go to UniProtKB:  Q9JWM8
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ACT
Query on ACT

Download SDF File 
Download CCD File 
A
ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.95 Å
  • R-Value Free: 0.218 
  • R-Value Work: 0.193 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 43.500α = 90.00
b = 47.600β = 90.00
c = 66.000γ = 90.00
Software Package:
Software NamePurpose
MxCuBEdata collection
PDB_EXTRACTdata extraction
SCALAdata scaling
XDSdata reduction
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2008-02-19
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Source and taxonomy, Version format compliance