3BER

Human DEAD-box RNA-helicase DDX47, conserved domain I in complex with AMP


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.4 Å
  • R-Value Free: 0.189 
  • R-Value Work: 0.165 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Comparative Structural Analysis of Human DEAD-Box RNA Helicases.

Schutz, P.Karlberg, T.van den Berg, S.Collins, R.Lehtio, L.Hogbom, M.Holmberg-Schiavone, L.Tempel, W.Park, H.W.Hammarstrom, M.Moche, M.Thorsell, A.G.Schuler, H.

(2010) Plos One 5: 12791-12791

  • DOI: 10.1371/journal.pone.0012791
  • Primary Citation of Related Structures:  2G9N, 2P6N, 2PL3, 2RB4, 3B7G, 3BOR, 3DKP, 3FE2, 3LY5, 3IUY

  • PubMed Abstract: 
  • DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domain ...

    DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.


    Organizational Affiliation

    Structural Genomics Consortium, Karolinska Institutet, Stockholm, Sweden.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Probable ATP-dependent RNA helicase DDX47
A
249Homo sapiensGene Names: DDX47
EC: 3.6.4.13
Find proteins for Q9H0S4 (Homo sapiens)
Go to Gene View: DDX47
Go to UniProtKB:  Q9H0S4
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PO4
Query on PO4

Download SDF File 
Download CCD File 
A
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
PGE
Query on PGE

Download SDF File 
Download CCD File 
A
TRIETHYLENE GLYCOL
C6 H14 O4
ZIBGPFATKBEMQZ-UHFFFAOYSA-N
 Ligand Interaction
AMP
Query on AMP

Download SDF File 
Download CCD File 
A
ADENOSINE MONOPHOSPHATE
C10 H14 N5 O7 P
UDMBCSSLTHHNCD-KQYNXXCUSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.4 Å
  • R-Value Free: 0.189 
  • R-Value Work: 0.165 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 93.050α = 90.00
b = 70.370β = 90.70
c = 35.860γ = 90.00
Software Package:
Software NamePurpose
XDSdata reduction
REFMACrefinement
MxCuBEdata collection
MOLREPphasing
XSCALEdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Revision History 

  • Version 1.0: 2007-12-04
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance