3AS5

MamA AMB-1 P212121


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Free: 0.241 
  • R-Value Work: 0.176 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly

Zeytuni, N.Ozyamak, E.Ben-Harush, K.Davidov, G.Levin, M.Gat, Y.Moyal, T.Brik, A.Komeili, A.Zarivach, R.

(2011) Proc.Natl.Acad.Sci.USA 108: E480-E487

  • DOI: 10.1073/pnas.1103367108
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, t ...

    The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, the assembly and biomineralization of magnetosomes are controlled by magnetosome-associated proteins. Here, we describe the crystal structures of the magnetosome-associated protein, MamA, from Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. MamA folds as a sequential tetra-trico-peptide repeat (TPR) protein with a unique hook-like shape. Analysis of the MamA structures indicates two distinct domains that can undergo conformational changes. Furthermore, structural analysis of seven crystal forms verified that the core of MamA is not affected by crystallization conditions and identified three protein-protein interaction sites, namely a concave site, a convex site, and a putative TPR repeat. Additionally, relying on transmission electron microscopy and size exclusion chromatography, we show that highly stable complexes form upon MamA homooligomerization. Disruption of the MamA putative TPR motif or N-terminal domain led to protein mislocalization in vivo and prevented MamA oligomerization in vitro. We, therefore, propose that MamA self-assembles through its putative TPR motif and its concave site to create a large homooligomeric scaffold which can interact with other magnetosome-associated proteins via the MamA convex site. We discuss the structural basis for TPR homooligomerization that allows the proper function of a prokaryotic organelle.


    Organizational Affiliation

    Department of Life Sciences, Ben Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
MamA
A, B
186Magnetospirillum magneticum (strain AMB-1 / ATCC 700264)Mutation(s): 0 
Gene Names: mamA (mms24)
Find proteins for Q2W8Q0 (Magnetospirillum magneticum (strain AMB-1 / ATCC 700264))
Go to UniProtKB:  Q2W8Q0
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
MG
Query on MG

Download SDF File 
Download CCD File 
A
MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2 Å
  • R-Value Free: 0.241 
  • R-Value Work: 0.176 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 44.750α = 90.00
b = 76.194β = 90.00
c = 105.057γ = 90.00
Software Package:
Software NamePurpose
PDB_EXTRACTdata extraction
REFMACrefinement
DENZOdata reduction
SHELXphasing
SHELXDphasing
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2011-07-20
    Type: Initial release
  • Version 1.1: 2013-06-26
    Type: Database references