3A4I

Crystal structure of GMP synthetase PH1347 from Pyrococcus horikoshii OT3


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.79 Å
  • R-Value Free: 0.246 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.212 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of the ATPPase subunit and its substrate-dependent association with the GATase Subunit: a novel regulatory mechanism for a two-subunit-type GMP synthetase from Pyrococcus horikoshii OT3.

Maruoka, S.Horita, S.Lee, W.C.Nagata, K.Tanokura, M.

(2010) J Mol Biol 395: 417-429

  • DOI: https://doi.org/10.1016/j.jmb.2009.10.053
  • Primary Citation of Related Structures:  
    3A4I

  • PubMed Abstract: 

    Guanosine 5'-monophosphate synthetase(s) (GMPS) catalyzes the final step of the de novo synthetic pathway of purine nucleotides. GMPS consists of two functional units that are present as domains or subunits: glutamine amidotransferase (GATase) and ATP pyrophosphatase (ATPPase). GATase hydrolyzes glutamine to yield glutamate and ammonia, while ATPPase utilizes ammonia to convert adenyl xanthosine 5'-monophosphate (adenyl-XMP) into guanosine 5'-monophosphate. Here we report the crystal structure of PH-ATPPase (the ATPPase subunit of the two-subunit-type GMPS from the hyperthermophilic archaeon Pyrococcus horikoshii OT3). PH-ATPPase consists of two domains (N-domain and C-domain) and exists as a homodimer in the crystal and in solution. The N-domain contains an ATP-binding platform called P-loop, whereas the C-domain contains the xanthosine 5'-monophosphate (XMP)-binding site and also contributes to homodimerization. We have also demonstrated that PH-GATase (the glutamine amidotransferase subunit of the two-subunit-type GMPS from the hyperthermophilic archaeon P. horikoshii OT3) alone is inactive, and that all substrates of PH-ATPPase except for ammonia (Mg(2+), ATP and XMP) are required to stabilize the active complex of PH-ATPPase and PH-GATase subunits.


  • Organizational Affiliation

    Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
GMP synthase [glutamine-hydrolyzing] subunit B
A, B
308Pyrococcus horikoshiiMutation(s): 0 
Gene Names: guaABPH1347
EC: 6.3.5.2
UniProt
Find proteins for O59072 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Explore O59072 
Go to UniProtKB:  O59072
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO59072
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.79 Å
  • R-Value Free: 0.246 
  • R-Value Work: 0.210 
  • R-Value Observed: 0.212 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 69.903α = 90
b = 82.212β = 90
c = 111.565γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection
HKL-2000data reduction
HKL-2000data scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2009-07-21
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Advisory, Source and taxonomy, Version format compliance
  • Version 1.2: 2024-03-13
    Changes: Data collection, Database references