2ZZF

Crystal structure of alanyl-tRNA synthetase without oligomerization domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.206 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

The structure of alanyl-tRNA synthetase with editing domain.

Sokabe, M.Ose, T.Nakamura, A.Tokunaga, K.Nureki, O.Yao, M.Tanaka, I.

(2009) Proc.Natl.Acad.Sci.USA 106: 11028-11033

  • DOI: 10.1073/pnas.0904645106
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Alanyl-tRNA synthetase (AlaRS) catalyzes synthesis of Ala-tRNA(Ala) and hydrolysis of mis-acylated Ser- and Gly-tRNA(Ala) at 2 different catalytic sites. Here, we describe the monomer structures of C-terminal truncated archaeal AlaRS, with both activ ...

    Alanyl-tRNA synthetase (AlaRS) catalyzes synthesis of Ala-tRNA(Ala) and hydrolysis of mis-acylated Ser- and Gly-tRNA(Ala) at 2 different catalytic sites. Here, we describe the monomer structures of C-terminal truncated archaeal AlaRS, with both activation and editing domains in the apo form, in complex with an Ala-AMP analog, and in a high-resolution lysine-methylated form. The structures show docking of the editing domain to the activation domain opposite from the predicted tRNA-binding surface. Thus, the editing site is positioned >35 A from the activation site, prompting us to model 2 different tRNA complexes: one binding tRNA at the activation site, and the other binding tRNA at the editing site. Interestingly, a gel-shift assay also implies the presence of 2 types of tRNA complex with different mobility. These results suggest that tRNA translocation via a canonical CCA flipping is unlikely to occur in AlaRS. The structure also demonstrated the binding of zinc in the editing site, in which the specific coordination of zinc would be facilitated by a conserved GGQ motif, implying that the editing mechanism may not be the same as in ThrRS. As Asn-194 in eubacterial AlaRS important for Ser misactivation is replaced by Thr-213 in archaeal AlaRS, a different Ser accommodation mechanism is proposed.


    Organizational Affiliation

    Faculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Alanyl-tRNA synthetase
A
752Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3)Mutation(s): 0 
Gene Names: alaS
EC: 6.1.1.7
Find proteins for O58035 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Go to UniProtKB:  O58035
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download SDF File 
Download CCD File 
A
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.206 
  • Space Group: C 1 2 1
Unit Cell:
Length (Å)Angle (°)
a = 164.258α = 90.00
b = 98.840β = 108.64
c = 72.927γ = 90.00
Software Package:
Software NamePurpose
HKL-2000data collection
HKL-2000data scaling
REFMACrefinement
PDB_EXTRACTdata extraction
DENZOdata reduction
MOLREPphasing
SCALEPACKdata scaling
HKL-2000data reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2009-07-21
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance
  • Version 1.2: 2017-10-11
    Type: Refinement description