2YIK

Catalytic domain of Clostridium thermocellum CelT


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.199 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.182 

wwPDB Validation   3D Report Full Report


This is version 1.1 of the entry. See complete history


Literature

Structure of the Catalytic Domain of the Clostridium Thermocellum Cellulase Celt

Kesavulu, M.M.Tsai, J.-Y.Lee, H.-L.Liang, P.-H.Hsiao, C.-D.

(2012) Acta Crystallogr D Biol Crystallogr 68: 310

  • DOI: 10.1107/S0907444912001990
  • Primary Citation of Related Structures:  
    2YIK

  • PubMed Abstract: 
  • Cellulases hydrolyze cellulose, a major component of plant cell walls, to oligosaccharides and monosaccharides. Several Clostridium species secrete multi-enzyme complexes (cellulosomes) containing cellulases. C. thermocellum CelT, a family 9 cellulase, lacks the accessory module(s) necessary for activity, unlike most other family 9 cellulases ...

    Cellulases hydrolyze cellulose, a major component of plant cell walls, to oligosaccharides and monosaccharides. Several Clostridium species secrete multi-enzyme complexes (cellulosomes) containing cellulases. C. thermocellum CelT, a family 9 cellulase, lacks the accessory module(s) necessary for activity, unlike most other family 9 cellulases. Therefore, characterization of the CelT structure is essential in order to understand its catalytic mechanism. Here, the crystal structure of free CelTΔdoc, the catalytic domain of CelT, is reported at 2.1 Å resolution. Its structure differs in several aspects from those of other family 9 cellulases. CelTΔdoc contains an additional α-helix, α-helices of increased length and two additional surface-exposed β-strands. It also contains three calcium ions instead of one as found in C. cellulolyticum Cel9M. CelTΔdoc also has two flexible loops at the open end of its active-site cleft. Movement of these loops probably allows the substrate to access the active site. CelT is stable over a wide range of pH and temperature conditions, suggesting that CelT could be used to convert cellulose biomass into biofuel.


    Organizational Affiliation

    Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
ENDOGLUCANASEA611Acetivibrio thermocellusMutation(s): 0 
EC: 3.2.1.4 (PDB Primary Data), 3.2.1 (UniProt)
Find proteins for A3DJ82 (Hungateiclostridium thermocellum (strain ATCC 27405 / DSM 1237 / JCM 9322 / NBRC 103400 / NCIMB 10682 / NRRL B-4536 / VPI 7372))
Explore A3DJ82 
Go to UniProtKB:  A3DJ82
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
E [auth A]ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
CA
Query on CA

Download Ideal Coordinates CCD File 
B [auth A], C [auth A], D [auth A]CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.199 
  • R-Value Work: 0.182 
  • R-Value Observed: 0.182 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 96.86α = 90
b = 96.86β = 90
c = 159.92γ = 90
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2012-02-29
    Type: Initial release
  • Version 1.1: 2012-03-28
    Changes: Other