2XCB

Crystal structure of PcrH in complex with the chaperone binding region of PopD


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.230 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structural Basis of Chaperone Recognition of Type III Secretion System Minor Translocator Proteins.

Job, V.Mattei, P.-J.Lemaire, D.Attree, I.Dessen, A.

(2010) J.Biol.Chem. 285: 23224

  • DOI: 10.1074/jbc.M110.111278
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3 ...

    The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the "translocators") are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development.


    Organizational Affiliation

    Bacterial Pathogenesis Group, Institut de Biologie Structurale, UMR 5075, CNRS/Commissariat à l'Enérgie Atomique/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble, France.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
REGULATORY PROTEIN PCRH
A, B
142Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)Mutation(s): 0 
Gene Names: pcrH
Find proteins for Q9I325 (Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1))
Go to UniProtKB:  Q9I325
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetails
PEPD
C
10Pseudomonas aeruginosaMutation(s): 0 
Gene Names: pepD
Find proteins for O50280 (Pseudomonas aeruginosa)
Go to UniProtKB:  O50280
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
NO3
Query on NO3

Download SDF File 
Download CCD File 
B
NITRATE ION
N O3
NHNBFGGVMKEFGY-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.262 
  • R-Value Work: 0.230 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 44.370α = 90.00
b = 97.720β = 90.00
c = 73.590γ = 90.00
Software Package:
Software NamePurpose
XDSdata scaling
PHASERphasing
REFMACrefinement
XDSdata reduction

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2010-05-05
    Type: Initial release
  • Version 1.1: 2012-10-03
    Type: Derived calculations, Version format compliance