2VUP

Crystal structure of a type II tryparedoxin-dependant peroxidase from Trypanosoma brucei


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.208 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural and Mechanistic Insights Into Type II Trypanosomatid Tryparedoxin-Dependent Peroxidases.

Alphey, M.S.Konig, J.Fairlamb, A.H.

(2008) Biochem J 414: 375

  • DOI: 10.1042/BJ20080889
  • Primary Citation of Related Structures:  
    2VUP

  • PubMed Abstract: 
  • TbTDPX (Trypanosoma brucei tryparedoxin-dependent peroxidase) is a genetically validated drug target in the fight against African sleeping sickness. Despite its similarity to members of the GPX (glutathione peroxidase) family, TbTDPX2 is functional as a monomer, lacks a selenocysteine residue and relies instead on peroxidatic and resolving cysteine residues for catalysis and uses tryparedoxin rather than glutathione as electron donor ...

    TbTDPX (Trypanosoma brucei tryparedoxin-dependent peroxidase) is a genetically validated drug target in the fight against African sleeping sickness. Despite its similarity to members of the GPX (glutathione peroxidase) family, TbTDPX2 is functional as a monomer, lacks a selenocysteine residue and relies instead on peroxidatic and resolving cysteine residues for catalysis and uses tryparedoxin rather than glutathione as electron donor. Kinetic studies indicate a saturable Ping Pong mechanism, unlike selenium-dependent GPXs, which display infinite K(m) and V(max) values. The structure of the reduced enzyme at 2.1 A (0.21 nm) resolution reveals that the catalytic thiol groups are widely separated [19 A (0.19 nm)] and thus unable to form a disulphide bond without a large conformational change in the secondary-structure architecture, as reported for certain plant GPXs. A model of the oxidized enzyme structure is presented and the implications for small-molecule inhibition are discussed.


    Organizational Affiliation

    Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
GLUTATHIONE PEROXIDASE-LIKE PROTEINA190Trypanosoma bruceiMutation(s): 1 
Gene Names: gpx2
EC: 1.11.1.9
UniProt
Find proteins for Q869A6 (Trypanosoma brucei)
Explore Q869A6 
Go to UniProtKB:  Q869A6
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ869A6
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.205 
  • R-Value Observed: 0.208 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 43.26α = 90
b = 32.7β = 95.92
c = 58.31γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
XDSdata reduction
XSCALEdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2008-06-17
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance