2Q4Y

Ensemble refinement of the protein crystal structure of At1g77540-coenzyme A complex


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.06 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.171 
  • R-Value Observed: 0.171 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.4 of the entry. See complete history

Re-refinement Note

This entry reflects an alternative modeling of the original data in: 2IL4


Literature

Ensemble refinement of protein crystal structures: validation and application.

Levin, E.J.Kondrashov, D.A.Wesenberg, G.E.Phillips, G.N.

(2007) Structure 15: 1040-1052

  • DOI: https://doi.org/10.1016/j.str.2007.06.019
  • Primary Citation of Related Structures:  
    2Q3M, 2Q3O, 2Q3P, 2Q3Q, 2Q3R, 2Q3S, 2Q3T, 2Q3U, 2Q3V, 2Q3W, 2Q40, 2Q41, 2Q42, 2Q43, 2Q44, 2Q45, 2Q46, 2Q47, 2Q48, 2Q49, 2Q4A, 2Q4B, 2Q4C, 2Q4D, 2Q4E, 2Q4F, 2Q4H, 2Q4I, 2Q4J, 2Q4K, 2Q4L, 2Q4M, 2Q4N, 2Q4O, 2Q4P, 2Q4Q, 2Q4R, 2Q4S, 2Q4T, 2Q4U, 2Q4V, 2Q4X, 2Q4Y, 2Q4Z, 2Q50, 2Q51, 2Q52

  • PubMed Abstract: 

    X-ray crystallography typically uses a single set of coordinates and B factors to describe macromolecular conformations. Refinement of multiple copies of the entire structure has been previously used in specific cases as an alternative means of representing structural flexibility. Here, we systematically validate this method by using simulated diffraction data, and we find that ensemble refinement produces better representations of the distributions of atomic positions in the simulated structures than single-conformer refinements. Comparison of principal components calculated from the refined ensembles and simulations shows that concerted motions are captured locally, but that correlations dissipate over long distances. Ensemble refinement is also used on 50 experimental structures of varying resolution and leads to decreases in R(free) values, implying that improvements in the representation of flexibility observed for the simulated structures may apply to real structures. These gains are essentially independent of resolution or data-to-parameter ratio, suggesting that even structures at moderate resolution can benefit from ensemble refinement.


  • Organizational Affiliation

    Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Uncharacterized protein At1g77540103Arabidopsis thalianaMutation(s): 0 
Gene Names: At1g77540T5M16.13
UniProt
Find proteins for Q9CAQ2 (Arabidopsis thaliana)
Explore Q9CAQ2 
Go to UniProtKB:  Q9CAQ2
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ9CAQ2
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
COA
Query on COA

Download Ideal Coordinates CCD File 
B [auth A]COENZYME A
C21 H36 N7 O16 P3 S
RGJOEKWQDUBAIZ-IBOSZNHHSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.06 Å
  • R-Value Free: 0.225 
  • R-Value Work: 0.171 
  • R-Value Observed: 0.171 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 27.905α = 90
b = 63.941β = 90.86
c = 29.525γ = 90
Software Package:
Software NamePurpose
CNSrefinement
PDB_EXTRACTdata extraction
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-06-19
    Type: Initial release
  • Version 1.1: 2007-09-25
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2011-08-10
    Changes: Other
  • Version 1.4: 2023-08-30
    Changes: Data collection, Database references, Derived calculations, Refinement description