2O66

Crystal Structure of Arabidopsis thaliana PII bound to citrate


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.193 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal Structure of Arabidopsis PII Reveals Novel Structural Elements Unique to Plants.

Mizuno, Y.Berenger, B.Moorhead, G.B.Ng, K.K.

(2007) Biochemistry 46: 1477-1483

  • DOI: 10.1021/bi062149e
  • Primary Citation of Related Structures:  
    2O67, 2O66

  • PubMed Abstract: 
  • The 1.9 A resolution crystal structure of PII from Arabidopsis thaliana reveals for the first time the molecular structure of a widely conserved regulator of carbon and nitrogen metabolism from a eukaryote. The structure provides a framework for understanding the arrangement of highly conserved residues shared with PII proteins from bacteria, archaea, and red algae as well as residues conserved only in plant PII ...

    The 1.9 A resolution crystal structure of PII from Arabidopsis thaliana reveals for the first time the molecular structure of a widely conserved regulator of carbon and nitrogen metabolism from a eukaryote. The structure provides a framework for understanding the arrangement of highly conserved residues shared with PII proteins from bacteria, archaea, and red algae as well as residues conserved only in plant PII. Most strikingly, a highly conserved segment at the N-terminus that is found only in plant PII forms numerous interactions with the alpha2 helix and projects from the surface of the homotrimer opposite to that occupied by the T-loop. In addition, solvent-exposed residues near the T-loop are highly conserved in plants but differ in prokaryotes. Several residues at the C-terminus that are also highly conserved only in plants contribute part of the ATP-binding site and likely participate in an ATP-induced conformational change. Structures of PII also reveal how citrate and malonate bind near the triphosphate binding site occupied by ATP in bacterial and archaeal PII proteins.


    Organizational Affiliation

    Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
PII protein ABC135Arabidopsis thalianaMutation(s): 0 
Gene Names: At4g01900T7B11.16GLB1GLNB1
Find proteins for Q9ZST4 (Arabidopsis thaliana)
Explore Q9ZST4 
Go to UniProtKB:  Q9ZST4
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FLC
Query on FLC

Download Ideal Coordinates CCD File 
A, B, C
CITRATE ANION
C6 H5 O7
KRKNYBCHXYNGOX-UHFFFAOYSA-K
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.224 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.193 
  • Space Group: C 1 2 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 92.709α = 90
b = 66.752β = 118.93
c = 61.743γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
DENZOdata reduction
SCALEPACKdata scaling
PHASERphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-02-20
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance