2N2O

Structure of murine tumour necrosis factor alpha CDE RNA


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

A Distinct, Sequence-Induced Conformation Is Required for Recognition of the Constitutive Decay Element RNA by Roquin.

Codutti, L.Leppek, K.Zalesak, J.Windeisen, V.Masiewicz, P.Stoecklin, G.Carlomagno, T.

(2015) Structure 23: 1437-1447

  • DOI: 10.1016/j.str.2015.06.001
  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • The constitutive decay element (CDE) of tumor necrosis factor α (TNF-α) mRNA (Tnf) represents the prototype of a class of RNA motifs that mediate rapid degradation of mRNAs encoding regulators of the immune response and development. CDE-type RNAs are ...

    The constitutive decay element (CDE) of tumor necrosis factor α (TNF-α) mRNA (Tnf) represents the prototype of a class of RNA motifs that mediate rapid degradation of mRNAs encoding regulators of the immune response and development. CDE-type RNAs are hairpin structures featuring a tri-nucleotide loop. The protein Roquin recognizes CDE-type stem loops and recruits the Ccr4-Caf1-Not deadenylase complex to the mRNA, thereby inducing its decay. Stem recognition does not involve nucleotide bases; however, there is a strong stem sequence requirement for functional CDEs. Here, we present the solution structures of the natural Tnf CDE and of a CDE mutant with impaired Roquin binding. We find that the two CDEs adopt unique and distinct structures in both the loop and the stem, which explains the ability of Roquin to recognize stem loops in a sequence-specific manner. Our findings result in a relaxed consensus motif for prediction of new CDE stem loops.


    Organizational Affiliation

    Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center (DKFZ) and Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.,European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124 Braunschweig, Germany. Electronic address: teresa.carlomagno@embl.de.,European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsLengthOrganism
RNA (5'-R(P*GP*CP*AP*UP*GP*UP*UP*UP*UP*CP*UP*GP*UP*GP*AP*AP*AP*AP*CP*GP*GP*UP*U)-3')A23synthetic construct
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2015-08-05
    Type: Initial release
  • Version 1.1: 2015-08-26
    Type: Database references