2MRN

Structure of truncated EcMazE


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.0 of the entry. See complete history

Literature

Escherichia coli antitoxin MazE as transcription factor: insights into MazE-DNA binding.

Zorzini, V.Buts, L.Schrank, E.Sterckx, Y.G.Respondek, M.Engelberg-Kulka, H.Loris, R.Zangger, K.van Nuland, N.A.

(2015) Nucleic Acids Res. 43: 1241-1256

  • DOI: 10.1093/nar/gku1352
  • Primary Citation of Related Structures:  2MRU

  • PubMed Abstract: 
  • Toxin-antitoxin (TA) modules are pairs of genes essential for bacterial regulation upon environmental stresses. The mazEF module encodes the MazF toxin and its cognate MazE antitoxin. The highly dynamic MazE possesses an N-terminal DNA binding domain ...

    Toxin-antitoxin (TA) modules are pairs of genes essential for bacterial regulation upon environmental stresses. The mazEF module encodes the MazF toxin and its cognate MazE antitoxin. The highly dynamic MazE possesses an N-terminal DNA binding domain through which it can negatively regulate its own promoter. Despite being one of the first TA systems studied, transcriptional regulation of Escherichia coli mazEF remains poorly understood. This paper presents the solution structure of C-terminal truncated E. coli MazE and a MazE-DNA model with a DNA palindrome sequence ∼ 10 bp upstream of the mazEF promoter. The work has led to a transcription regulator-DNA model, which has remained elusive thus far in the E. coli toxin-antitoxin family. Multiple complementary techniques including NMR, SAXS and ITC show that the long intrinsically disordered C-termini in MazE, required for MazF neutralization, does not affect the interactions between the antitoxin and its operator. Rather, the MazE C-terminus plays an important role in the MazF binding, which was found to increase the MazE affinity for the palindromic single site operator.


    Organizational Affiliation

    Molecular Recognition Unit, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Antitoxin MazE
A, B
67Escherichia coli (strain K12)Gene Names: mazE (chpAI, chpR)
Find proteins for P0AE72 (Escherichia coli (strain K12))
Go to UniProtKB:  P0AE72
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2015-02-04
    Type: Initial release