2KB2

BlrP1 BLUF


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 500 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

Structure and insight into blue light-induced changes in the BlrP1 BLUF domain

Wu, Q.Gardner, K.

(2009) Biochemistry 48: 2620-2629

  • DOI: 10.1021/bi802237r

  • PubMed Abstract: 
  • BLUF domains (sensors of blue light using flavin adenine dinucleotide) are a group of flavin-containing blue light photosensory domains from a variety of bacterial and algal proteins. While spectroscopic studies have indicated that these domains reor ...

    BLUF domains (sensors of blue light using flavin adenine dinucleotide) are a group of flavin-containing blue light photosensory domains from a variety of bacterial and algal proteins. While spectroscopic studies have indicated that these domains reorganize their interactions with an internally bound chromophore upon illumination, it remains unclear how these are converted into structural and functional changes. To address this, we have solved the solution structure of the BLUF domain from Klebsiella pneumoniae BlrP1, a light-activated c-di-guanosine 5'-monophosphate phosphodiesterase which consists of a sensory BLUF and a catalytic EAL (Glu-Ala-Leu) domain [Schmidt et. al. (2008) J. Bacteriol. 187, 4774-4781]. Our dark state structure of the sensory domain shows that it adopts a standard BLUF domain fold followed by two C-terminal alpha helices which adopt a novel orientation with respect to the rest of the domain. Comparison of NMR spectra acquired under dark and light conditions suggests that residues throughout the BlrP1 BLUF domain undergo significant light-induced chemical shift changes, including sites clustered on the beta(4)beta(5) loop, beta(5) strand, and alpha(3)alpha(4) loop. Given that these changes were observed at several sites on the helical cap, over 15 A from chromophore, our data suggest a long-range signal transduction process in BLUF domains.


    Organizational Affiliation

    Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8816, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
BlrP1
A
148Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578)N/A
Find proteins for A6T8V8 (Klebsiella pneumoniae subsp. pneumoniae (strain ATCC 700721 / MGH 78578))
Go to UniProtKB:  A6T8V8
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
FMN
Query on FMN

Download SDF File 
Download CCD File 
A
FLAVIN MONONUCLEOTIDE
RIBOFLAVIN MONOPHOSPHATE
C17 H21 N4 O9 P
FVTCRASFADXXNN-SCRDCRAPSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 500 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • Olderado: 2KB2 Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2008-11-19 
  • Released Date: 2009-04-07 
  • Deposition Author(s): Wu, Q., Gardner, K.H.

Revision History 

  • Version 1.0: 2009-04-07
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance