2JOR

NMR Solution Structure, Stability, and Interaction of the Recombinant Bovine Fibrinogen alphaC-Domain Fragment


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 500 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation 3D Report Full Report


This is version 1.1 of the entry. See complete history

Literature

NMR Solution Structure, Stability, and Interaction of the Recombinant Bovine Fibrinogen alphaC-Domain Fragment

Burton, R.A.Tsurupa, G.Hantgan, R.R.Tjandra, N.Medved, L.

(2007) Biochemistry 46: 8550-8560

  • DOI: 10.1021/bi700606v

  • PubMed Abstract: 
  • According to the existing hypothesis, in fibrinogen, the COOH-terminal portions of two Aalpha chains are folded into compact alphaC-domains that interact intramolecularly with each other and with the central region of the molecule; in fibrin, the alp ...

    According to the existing hypothesis, in fibrinogen, the COOH-terminal portions of two Aalpha chains are folded into compact alphaC-domains that interact intramolecularly with each other and with the central region of the molecule; in fibrin, the alphaC-domains switch to an intermolecular interaction resulting in alphaC-polymers. In agreement, our recent NMR study identified within the bovine fibrinogen Aalpha374-538 alphaC-domain fragment an ordered compact structure including a beta-hairpin restricted at the base by a 423-453 disulfide linkage. To establish the complete structure of the alphaC-domain and to further test the hypothesis, we expressed a shorter alphaC-fragment, Aalpha406-483, and performed detailed analysis of its structure, stability, and interactions. NMR experiments on the Aalpha406-483 fragment identified a second loose beta-hairpin formed by residues 459-476, yielding a structure consisting of an intrinsically unstable mixed parallel/antiparallel beta-sheet. Size-exclusion chromatography and sedimentation velocity experiments revealed that the Aalpha406-483 fragment forms soluble oligomers whose fraction increases with an increase in concentration. This was confirmed by sedimentation equilibrium analysis, which also revealed that the addition of each monomer to an assembling alphaC-oligomer substantially increases its stabilizing free energy. In agreement, unfolding experiments monitored by CD established that oligomerization of Aalpha406-483 results in increased thermal stability. Altogether, these experiments establish the complete NMR solution structure of the Aalpha406-483 alphaC-domain fragment, provide direct evidence for the intra- and intermolecular interactions between the alphaC-domains, and confirm that these interactions are thermodynamically driven.


    Organizational Affiliation

    Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 Center Drive, Bethesda, Maryland 20892, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Fibrinogen alpha chain
A
79Bos taurusMutation(s): 0 
Gene Names: FGA
Find proteins for P02672 (Bos taurus)
Go to Gene View: FGA
Go to UniProtKB:  P02672
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 500 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • Olderado: 2JOR Olderado

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-08-07
    Type: Initial release
  • Version 1.1: 2011-07-13
    Type: Version format compliance