2JO5

Tetrameric structure of KIA7F peptide


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 250 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Getting specificity from simplicity in putative proteins from the prebiotic earth.

Lopez de la Osa, J.Bateman, D.A.Ho, S.Gonzalez, C.Chakrabartty, A.Laurents, D.V.

(2007) Proc Natl Acad Sci U S A 104: 14941-14946

  • DOI: https://doi.org/10.1073/pnas.0706876104
  • Primary Citation of Related Structures:  
    2JO4, 2JO5

  • PubMed Abstract: 

    Can unique protein structures arise from a limited set of amino acids present on the prebiotic earth? To address this question, we have determined the stability and structure of KIA7, a 20-residue polypeptide containing chiefly Lys, Ile, and Ala. NMR methods reveal that KIA7 tetramerizes and folds on the millisecond time scale to adopt a four-helix X-bundle structure with a tightly and specifically packed core. Denaturation studies and hydrogen exchange measurements of KIA7 and several variants demonstrate that ridges-into-grooves packing of Ala and Ile side chains and the packing of a C-terminal aromatic group into the hydrophobic core are sufficient to give rise to a rather stable, well folded protein structure, with no favorable electrostatic interactions or tertiary or quaternary hydrogen bonds. Both modern proteins and RNAs can adopt specific structures, but RNAs do so with a limited "alphabet" of residues and types of stabilizing interactions. The results reported here show that specific, well folded protein structures can also arise from a highly reduced set of stabilizing interactions and amino acids that are thought to have been present on the prebiotic earth.


  • Organizational Affiliation

    Instituto de Química Física "Rocasolano," Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain.


Macromolecules

Find similar proteins by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
KIA7F
A, B, C, D
22N/AMutation(s): 0 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 250 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-09-18
    Type: Initial release
  • Version 1.1: 2011-07-13
    Changes: Version format compliance
  • Version 1.2: 2022-03-09
    Changes: Data collection, Database references, Derived calculations
  • Version 1.3: 2023-12-20
    Changes: Data collection, Other