2IV0

Thermal stability of isocitrate dehydrogenase from Archaeoglobus fulgidus studied by crystal structure analysis and engineering of chimers


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.254 
  • R-Value Work: 0.196 
  • R-Value Observed: 0.199 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Thermal Stability of Isocitrate Dehydrogenase from Archaeoglobus Fulgidus Studied by Crystal Structure Analysis and Engineering of Chimers

Stokke, R.Karlstrom, M.Yang, N.Leiros, I.Ladenstein, R.Birkeland, N.K.Steen, I.H.

(2007) Extremophiles 11: 481

  • DOI: 10.1007/s00792-006-0060-z
  • Primary Citation of Related Structures:  
    2IV0

  • PubMed Abstract: 
  • Isocitrate dehydrogenase from Archaeoglobus fulgidus (AfIDH) has an apparent melting temperature (T(m)) of 98.5 degrees C. To identify the structural features involved in thermal stabilization of AfIDH, the structure was solved to 2.5 A resolution. A ...

    Isocitrate dehydrogenase from Archaeoglobus fulgidus (AfIDH) has an apparent melting temperature (T(m)) of 98.5 degrees C. To identify the structural features involved in thermal stabilization of AfIDH, the structure was solved to 2.5 A resolution. AfIDH was strikingly similar to mesophilic IDH from Escherichia coli (EcIDH) and displayed almost the same number of ion pairs and ionic networks. However, two unique inter-domain networks were present in AfIDH; one three-membered ionic network between the large and the small domain and one four-membered ionic network between the clasp and the small domain. The latter ionic network was presumably reduced in size when the clasp domain of AfIDH was swapped with that of EcIDH and the T (m) decreased by 18 degrees C. Contrarily, EcIDH was only stabilized by 4 degrees C by the clasp domain of AfIDH, a result probably due to the introduction of a unique inter-subunit aromatic cluster in AfIDH that may strengthen the dimeric interface in this enzyme. A unique aromatic cluster was identified close to the N-terminus of AfIDH that could provide additional stabilization of this region. Common and unique heat adaptive traits of AfIDH with those recently observed for hyperthermophilic IDH from Aeropyrum pernix (ApIDH) and Thermotoga maritima (TmIDH) are discussed herein.


    Organizational Affiliation

    Department of Biology, University of Bergen, PO Box 7800, Jahnebakken 5, 5020, Bergen, Norway. Ida.Steen@bio.uib.no



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
ISOCITRATE DEHYDROGENASEAB412Archaeoglobus fulgidusMutation(s): 0 
EC: 1.1.1.42
Find proteins for O29610 (Archaeoglobus fulgidus (strain ATCC 49558 / VC-16 / DSM 4304 / JCM 9628 / NBRC 100126))
Explore O29610 
Go to UniProtKB:  O29610
Protein Feature View
Expand
 ( Mouse scroll to zoom / Hold left click to move )
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download CCD File 
A, B
ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
CL
Query on CL

Download CCD File 
A, B
CHLORIDE ION
Cl
VEXZGXHMUGYJMC-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.50 Å
  • R-Value Free: 0.254 
  • R-Value Work: 0.196 
  • R-Value Observed: 0.199 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 81.611α = 90
b = 65.405β = 95.28
c = 87.181γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
MOSFLMdata reduction
SCALAdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2007-04-17
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance