2ISZ

Crystal structure of a two-domain IdeR-DNA complex crystal form I


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.201 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal structures, metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium tuberculosis

Wisedchaisri, G.Chou, C.J.Wu, M.Roach, C.Rice, A.E.Holmes, R.K.Beeson, C.Hol, W.G.

(2007) Biochemistry 46: 436-447

  • DOI: https://doi.org/10.1021/bi0609826
  • Primary Citation of Related Structures:  
    2ISY, 2ISZ, 2IT0

  • PubMed Abstract: 
  • The iron-dependent regulator IdeR is a key transcriptional regulator of iron uptake in Mycobacterium tuberculosis. In order to increase our insight into the role of the SH3-like third domain of this essential regulator, the metal-binding and DNA-binding properties of two-domain IdeR (2D-IdeR) whose SH3-like domain has been truncated were characterized ...

    The iron-dependent regulator IdeR is a key transcriptional regulator of iron uptake in Mycobacterium tuberculosis. In order to increase our insight into the role of the SH3-like third domain of this essential regulator, the metal-binding and DNA-binding properties of two-domain IdeR (2D-IdeR) whose SH3-like domain has been truncated were characterized. The equilibrium dissociation constants for Co2+ and Ni2+ activation of 2D-IdeR for binding to the fxbA operator and the DNA-binding affinities of 2D-IdeR in the presence of excess metal ions were estimated using fluorescence spectroscopy. 2D-IdeR binds to fxbA operator DNA with similar affinity as full-length IdeR in the presence of excess metal ion. However, the Ni2+ concentrations required to activate 2D-IdeR for DNA binding appear to be smaller than that for full-length IdeR while the concentration of Co2+ required for activation remains the same. We have determined the crystal structures of Ni2+-activated 2D-IdeR at 1.96 A resolution and its double dimer complex with the mbtA-mbtB operator DNA in two crystal forms at 2.4 A and 2.6 A, the highest resolutions for DNA complexes for any structures of iron-dependent regulator family members so far. The 2D-IdeR-DNA complex structures confirm the specificity of Ser37 and Pro39 for thymine bases and suggest preferential contacts of Gln43 to cytosine bases of the DNA. In addition, our 2D-IdeR structures reveal a remarkable property of the TEV cleavage sequence remaining after removal of the C-terminal His6. This C-terminal tail promotes crystal contacts by forming a beta-sheet with the corresponding tail of neighboring subunits in two unrelated structures of 2D-IdeR, one with and one without DNA. The contact-promoting properties of this C-terminal TEV cleavage sequence may be beneficial for crystallizing other proteins.


    Organizational Affiliation

    Department of Biochemistry and Biomolecular Structure Center, University of Washington, Seattle, Washington 98195, USA.



Macromolecules

Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 3
MoleculeChainsSequence LengthOrganismDetailsImage
Iron-dependent repressor ideRC [auth A],
D [auth B],
E [auth C],
F [auth D]
157Mycobacterium tuberculosisMutation(s): 0 
Gene Names: ideRdtxR
UniProt
Find proteins for P9WMH1 (Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv))
Explore P9WMH1 
Go to UniProtKB:  P9WMH1
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP9WMH1
Protein Feature View
Expand
  • Reference Sequence
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsLengthOrganismImage
mbtA/mbtB operator strand 1A [auth E]33N/A
Protein Feature View
Expand
  • Reference Sequence
Find similar nucleic acids by:  (by identity cutoff)  |  3D Structure
Entity ID: 2
MoleculeChainsLengthOrganismImage
mbtA/mbtB operator strand 2B [auth F]33N/A
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.40 Å
  • R-Value Free: 0.239 
  • R-Value Work: 0.199 
  • R-Value Observed: 0.201 
  • Space Group: P 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 53.832α = 106.57
b = 69.739β = 104.85
c = 76.461γ = 99.66
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
MOLREPphasing
REFMACrefinement
PDB_EXTRACTdata extraction
HKL-2000data collection

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-02-13
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-10-18
    Changes: Refinement description