2I3B

Solution Structure of a Human Cancer-Related Nucleoside Triphosphatase


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 80 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

NMR Structure and Functional Characterization of a Human Cancer-related Nucleoside Triphosphatase.

Placzek, W.J.Almeida, M.S.Wuthrich, K.

(2007) J Mol Biol 367: 788-801

  • DOI: 10.1016/j.jmb.2007.01.001
  • Primary Citation of Related Structures:  
    2I3B

  • PubMed Abstract: 
  • A screen of the human cancer genome anatomy project (CGAP) database was performed to search for new proteins involved in tumorigenesis. The resulting hits were further screened for recombinant expression, solubility and protein aggregation, which led to the identification of the previously unknown human cancer-related (HCR) protein encoded by the mRNA NM_032324 as a target for structure determination by NMR ...

    A screen of the human cancer genome anatomy project (CGAP) database was performed to search for new proteins involved in tumorigenesis. The resulting hits were further screened for recombinant expression, solubility and protein aggregation, which led to the identification of the previously unknown human cancer-related (HCR) protein encoded by the mRNA NM_032324 as a target for structure determination by NMR. The three-dimensional structure of the protein in its complex with ATPgammaS forms a three-layered alpha/beta sandwich, with a central nine-stranded beta-sheet surrounded by five alpha-helices. Sequence and three-dimensional structure comparisons with AAA+ ATPases revealed the presence of Walker A (GPPGVGKT) and Walker B (VCVIDEIG) motifs. Using 1D (31)P-NMR spectroscopy and a coupled enzymatic assay for the determination of inorganic phosphate, we showed that the purified recombinant protein is active as a non-specific nucleoside triphosphatase, with k(cat)=7.6x10(-3) s(-1). The structural basis for the enzymatic activity of HCR-NTPase was further characterized by site-directed mutagenesis of the Walker B motif, which further contributes to making the HCR-NTPase an attractive new target for further biochemical characterization in the context of its presumed role in human tumorigenesis.


    Organizational Affiliation

    Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Human Cancer-Related NTPaseA189Homo sapiensMutation(s): 0 
Gene Names: CDRT1NTPCRC1orf57
EC: 3.6.1.15
Find proteins for Q9BSD7 (Homo sapiens)
Explore Q9BSD7 
Go to UniProtKB:  Q9BSD7
NIH Common Fund Data Resources
PHAROS:  Q9BSD7
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 80 
  • Conformers Submitted: 20 
  • Selection Criteria: target function 
  • OLDERADO: 2I3B Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2007-03-13
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance