2FST

mitogen activated protein kinase p38alpha (D176A+F327L) activating mutant


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.45 Å
  • R-Value Free: 0.241 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.208 

wwPDB Validation   3D Report Full Report


This is version 1.5 of the entry. See complete history


Literature

Structures of p38alpha Active Mutants Reveal Conformational Changes in L16 Loop that Induce Autophosphorylation and Activation

Diskin, R.Lebendiker, M.Engelberg, D.Livnah, O.

(2007) J Mol Biol 365: 66-76

  • DOI: https://doi.org/10.1016/j.jmb.2006.08.043
  • Primary Citation of Related Structures:  
    2FSL, 2FSM, 2FSO, 2FST

  • PubMed Abstract: 

    p38 mitogen-activated protein (MAP) kinases function in numerous signaling processes and are crucial for normal functions of cells and organisms. Abnormal p38 activity is associated with inflammatory diseases and cancers making the understanding of its activation mechanisms highly important. p38s are commonly activated by phosphorylation, catalyzed by MAP kinase kinases (MKKs). Moreover, it was recently revealed that the p38alpha is also activated via alternative pathways, which are MKK independent. The structural basis of p38 activation, especially in the alternative pathways, is mostly unknown. This lack of structural data hinders the study of p38's biology as well as the development of novel strategies for p38 inhibition. We have recently discovered and optimized a novel set of intrinsically active p38 mutants whose activities are independent of any upstream activation. The high-resolution crystal structures of the intrinsically active p38alpha mutants reveal that local alterations in the L16 loop region promote kinase activation. The L16 loop can be thus regarded as a molecular switch that upon conformational changes promotes activation. We suggest that similar conformational changes in L16 loop also occur in natural activation mechanisms of p38alpha in T-cells. Our biochemical studies reveal novel mechanistic insights into the activation process of p38. In this regard, the results indicate that the activation mechanism of the mutants involves dimerization and subsequent trans autophosphorylation on Thr180 (on the phosphorylation lip). Finally, we suggest a model of in vivo p38alpha activation induced by the L16 switch with auto regulatory characteristics.


  • Organizational Affiliation

    The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Mitogen-activated protein kinase 14A [auth X]367Homo sapiensMutation(s): 2 
EC: 2.7.1.37 (PDB Primary Data), 2.7.11.24 (UniProt)
UniProt & NIH Common Fund Data Resources
Find proteins for Q16539 (Homo sapiens)
Explore Q16539 
Go to UniProtKB:  Q16539
PHAROS:  Q16539
GTEx:  ENSG00000112062 
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ16539
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.45 Å
  • R-Value Free: 0.241 
  • R-Value Work: 0.206 
  • R-Value Observed: 0.208 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 68.673α = 90
b = 69.786β = 90
c = 74.227γ = 90
Software Package:
Software NamePurpose
REFMACrefinement
HKL-2000data reduction
SCALEPACKdata scaling
MOLREPphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-12-05
    Type: Initial release
  • Version 1.1: 2008-05-01
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Data collection, Database references, Derived calculations, Structure summary
  • Version 1.4: 2021-11-10
    Changes: Database references, Structure summary
  • Version 1.5: 2024-05-29
    Changes: Data collection