2DY7

Solution structure of the first chromodomain of yeast Chd1


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural Polymorphism of Chromodomains in Chd1

Okuda, M.Horikoshi, M.Nishimura, Y.

(2007) J Mol Biol 365: 1047-1062

  • DOI: https://doi.org/10.1016/j.jmb.2006.10.039
  • Primary Citation of Related Structures:  
    2DY7, 2DY8

  • PubMed Abstract: 

    Chromodomain from heterochromatin protein 1 and polycomb protein is known to be a lysine-methylated histone H3 tail-binding module. Chromo-helicase/ATPase DNA-binding protein 1 (CHD1) is an ATP-dependent chromatin remodeling factor, containing two tandem chromodomains. In human CHD1, both chromodomains are essential for specific binding to a K4 methylated histone H3 (H3 MeK4) peptide and are found to bind cooperatively in the crystal structure. For the budding yeast homologue, Chd1, the second but not the first chromodomain was once reported to bind to an H3 MeK4 peptide. Here, we reveal that neither the second chromodomain nor a region containing tandem chromodomains from yeast Chd1 bind to any lysine-methylated or arginine-methylated histone peptides that we examined. In addition, we examined the structures of the chromodomains from Chd1 by NMR. Although the tertiary structure of the region containing tandem chromodomains could not be obtained, the secondary structure deduced from NMR is well conserved in the tertiary structures of the corresponding first and second chromodomains determined individually by NMR. Both chromodomains of Chd1 demonstrate a structure similar to that of the corresponding part of CHD1, consisting of a three-stranded beta-sheet followed by a C-terminal alpha-helix. However, an additional helix between the first and second beta-strands, which is found in both of the first chromodomains of Chd1 and CHD1, is positioned in an entirely different manner in Chd1 and CHD1. In human CHD1 this helix forms the peptide-binding site. The amino acid sequences of the chromodomains could be well aligned on the basis of these structures. The alignment showed that yeast Chd1 lacks several key functional residues, which are responsible for specific binding to a methylated lysine residue in other chromodomains. Chd1 is likely to have no binding affinity for any H3 MeK peptide, as found in other chromodomain proteins.


  • Organizational Affiliation

    Graduate School of Supramolecular Biology, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Chromo domain protein 181Saccharomyces cerevisiaeMutation(s): 0 
Gene Names: CHD1/YER164W
EC: 3.6.1
UniProt
Find proteins for P32657 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P32657 
Go to UniProtKB:  P32657
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP32657
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 100 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-11-28
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2022-03-09
    Changes: Data collection, Database references, Derived calculations