2D3L

Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltopentaose.


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.168 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 2.1 of the entry. See complete history


Literature

Role of Trp140 at subsite -6 on the maltohexaose production of maltohexaose-producing amylase from alkalophilic Bacillus sp.707

Kanai, R.Haga, K.Akiba, T.Yamane, K.Harata, K.

(2006) Protein Sci 15: 468-477

  • DOI: https://doi.org/10.1110/ps.051877006
  • Primary Citation of Related Structures:  
    2D3L, 2D3N

  • PubMed Abstract: 

    Maltohexaose-producing amylase (G6-amylase) from alkalophilic Bacillus sp.707 predominantly produces maltohexaose (G6) in the yield of >30% of the total products from short-chain amylose (DP=17). Our previous crystallographic study showed that G6-amylase has nine subsites, from -6 to +3, and pointed out the importance of the indole moiety of Trp140 in G6 production. G6-amylase has very low levels of hydrolytic activities for oligosaccharides shorter than maltoheptaose. To elucidate the mechanism underlying G6 production, we determined the crystal structures of the G6-amylase complexes with G6 and maltopentaose (G5). In the active site of the G6-amylase/G5 complex, G5 is bound to subsites -6 to -2, while G1 and G6 are found at subsites +2 and -7 to -2, respectively, in the G6-amylase/G6 complex. In both structures, the glucosyl residue located at subsite -6 is stacked to the indole moiety of Trp140 within a distance of 4A. The measurement of the activities of the mutant enzymes when Trp140 was replaced by leucine (W140L) or by tyrosine (W140Y) showed that the G6 production from short-chain amylose by W140L is lower than that by W140Y or wild-type enzyme. The face-to-face short contact between Trp140 and substrate sugars is suggested to regulate the disposition of the glucosyl residue at subsite -6 and to govern product specificity for G6 production.


  • Organizational Affiliation

    Biological Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
Glucan 1,4-alpha-maltohexaosidase485Bacillus sp. 707Mutation(s): 0 
EC: 3.2.1.98
UniProt
Find proteins for P19571 (Bacillus sp. (strain 707))
Explore P19571 
Go to UniProtKB:  P19571
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP19571
Sequence Annotations
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChains Length2D Diagram Glycosylation3D Interactions
alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose
B
5N/A
Glycosylation Resources
GlyTouCan:  G50146AM
GlyCosmos:  G50146AM
Entity ID: 3
MoleculeChains Length2D Diagram Glycosylation3D Interactions
alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose-(1-4)-alpha-D-glucopyranose
C
3N/A
Glycosylation Resources
GlyTouCan:  G96370VA
GlyCosmos:  G96370VA
GlyGen:  G96370VA
Biologically Interesting Molecules (External Reference) 2 Unique
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.30 Å
  • R-Value Free: 0.213 
  • R-Value Work: 0.168 
  • R-Value Observed: 0.168 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 47.45α = 90
b = 82.46β = 90
c = 126.91γ = 90
Software Package:
Software NamePurpose
CNSrefinement
MOSFLMdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2006-03-14
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Source and taxonomy, Version format compliance
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary
  • Version 2.1: 2023-10-25
    Changes: Data collection, Database references, Refinement description, Structure summary