2AYH

CRYSTAL AND MOLECULAR STRUCTURE AT 1.6 ANGSTROMS RESOLUTION OF THE HYBRID BACILLUS ENDO-1,3-1,4-BETA-D-GLUCAN 4-GLUCANOHYDROLASE H(A16-M)


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Observed: 0.143 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Crystal and molecular structure at 0.16-nm resolution of the hybrid Bacillus endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase H(A16-M).

Hahn, M.Keitel, T.Heinemann, U.

(1995) Eur J Biochem 232: 849-858

  • Primary Citation of Related Structures:  
    2AYH

  • PubMed Abstract: 

    H(A16-M) is a hybrid endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase from Bacillus. Its crystal structure was refined using synchrotron X-ray diffraction data up to a maximal resolution of 0.16 nm. The R value of the resulting model is 14.3% against 21,032 reflections > 2 sigma. 93% of the amino acid residues are in the most favorable regions of the Ramachandran diagram, and geometrical parameters are in accordance with other proteins solved at high resolution. As shown earlier [Keitel, T., Simon, O., Borriss, R. & Heinemann, U. (1993) Proc. Natl Acad. Sci. USA 90, 5287-5291], the protein folds into a compact jellyroll-type beta-sheet structure. A systematic analysis of the secondary structure reveals the presence of two major antiparallel beta-sheets and a three-stranded minor mixed sheet. Amino acid residues involved in catalysis and substrate binding are located inside a deep channel spanning the surface of the protein. To investigate the stereochemical cause of the observed specificity of endo-1,3-1,4-beta-D-glucan 4-glucanohydrolases towards beta-1,4 glycosyl bonds adjacent to beta-1,3 bonds, the high-resolution crystal structure has been used to model an enzyme-substrate complex. It is proposed that productive substrate binding to the subsites p1, p2 and p3 of H(A16-M) requires a beta-1,3 linkage between glucose units bound to p1 and p2.


  • Organizational Affiliation

    Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
1,3-1,4-BETA-D-GLUCAN 4-GLUCANOHYDROLASE214hybridMutation(s): 0 
EC: 3.2.1.73
UniProt
Find proteins for P23904 (Paenibacillus macerans)
Explore P23904 
Go to UniProtKB:  P23904
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP23904
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
CA
Query on CA

Download Ideal Coordinates CCD File 
B [auth A]CALCIUM ION
Ca
BHPQYMZQTOCNFJ-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.60 Å
  • R-Value Observed: 0.143 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 64.18α = 90
b = 78.26β = 90
c = 39.23γ = 90
Software Package:
Software NamePurpose
TNTrefinement

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1995-03-31
    Type: Initial release
  • Version 1.1: 2008-03-21
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2024-06-05
    Changes: Data collection, Database references, Derived calculations, Other