1ZC0

Crystal structure of human hematopoietic tyrosine phosphatase (HePTP) catalytic domain


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.186 
  • R-Value Work: 0.161 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.

Mustelin, T.Tautz, L.Page, R.

(2005) J.Mol.Biol. 354: 150-163

  • DOI: 10.1016/j.jmb.2005.09.049

  • PubMed Abstract: 
  • Hematopoietic tyrosine phosphatase (HePTP) is a 38kDa class I non-receptor protein tyrosine phosphatase (PTP) that is strongly expressed in T cells. It is composed of a C-terminal classical PTP domain (residues 44-339) and a short N-terminal extensio ...

    Hematopoietic tyrosine phosphatase (HePTP) is a 38kDa class I non-receptor protein tyrosine phosphatase (PTP) that is strongly expressed in T cells. It is composed of a C-terminal classical PTP domain (residues 44-339) and a short N-terminal extension (residues 1-43) that functions to direct HePTP to its physiological substrates. Moreover, HePTP is a member of a recently identified family of PTPs that has a major role in regulating the activity and translocation of the MAP kinases Erk and p38. HePTP binds Erk and p38 via a short, highly conserved motif in its N terminus, termed the kinase interaction motif (KIM). Association of HePTP with Erk via the KIM results in an unusual, reciprocal interaction between the two proteins. First, Erk phosphorylates HePTP at residues Thr45 and Ser72. Second, HePTP dephosphorylates Erk at PTyr185. In order to gain further insight into the interaction of HePTP with Erk, we determined the structure of the PTP catalytic domain of HePTP, residues 44-339. The HePTP catalytic phosphatase domain displays the classical PTP1B fold and superimposes well with PTP-SL, the first KIM-containing phosphatase solved to high resolution. In contrast to the PTP-SL structure, however, HePTP crystallized with a well-ordered phosphate ion bound at the active site. This resulted in the closure of the catalytically important WPD loop, and thus, HePTP represents the first KIM-containing phosphatase solved in the closed conformation. Finally, using this structure of the HePTP catalytic domain, we show that both the phosphorylation of HePTP at Thr45 and Ser72 by Erk2 and the dephosphorylation of Erk2 at Tyr185 by HePTP require significant conformational changes in both proteins.


    Organizational Affiliation

    Program of Inflammation, The Burnham Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Tyrosine-protein phosphatase, non-receptor type 7
A
309Homo sapiensGene Names: PTPN7
EC: 3.1.3.48
Find proteins for P35236 (Homo sapiens)
Go to Gene View: PTPN7
Go to UniProtKB:  P35236
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
PO4
Query on PO4

Download SDF File 
Download CCD File 
A
PHOSPHATE ION
O4 P
NBIIXXVUZAFLBC-UHFFFAOYSA-K
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.85 Å
  • R-Value Free: 0.186 
  • R-Value Work: 0.161 
  • Space Group: P 61
Unit Cell:
Length (Å)Angle (°)
a = 127.101α = 90.00
b = 127.101β = 90.00
c = 59.863γ = 120.00
Software Package:
Software NamePurpose
HKL-2000data reduction
SOLVEphasing
SCALEPACKdata scaling
REFMACrefinement

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

  • Deposited Date: 2005-04-09 
  • Released Date: 2005-12-06 
  • Deposition Author(s): Page, R., Mustelin, T.

Revision History 

  • Version 1.0: 2005-12-06
    Type: Initial release
  • Version 1.1: 2008-04-30
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Advisory, Version format compliance