X-ray crystal structures of the S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine at 1.8-A resolution.
Primary Citation of Related Structures:   1UXY, 2MBR
PubMed Abstract: 
MurB catalyzes the second committed step in the synthesis of peptidoglycan, a key component of the bacterial cell wall. The crystal structures of both a S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine were solved and refined at 1 ...
MurB catalyzes the second committed step in the synthesis of peptidoglycan, a key component of the bacterial cell wall. The crystal structures of both a S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine were solved and refined at 1.8 A resolution. The single point mutation of residue 229 from serine to alanine eliminated a hydroxyl group which has previously been proposed to play a critical role as a proton donor during the second half-reaction of MurB, namely, reoxidation of FADH2 and reduction of the enolpyruvyl substrate. The mutation also resulted in the loss of the water molecule-hydrogen bonded to the serine hydroxyl in the wild-type structure changing the hydrogen-bonding network with in the active site. Comparison of the wild-type and S229A mutant structures confirms that the dramatic kinetic defect of an approximately 10(7)-fold decrease observed for the Ser 229 Ala mutant in the second half-reaction [Benson, T.E., Walsh, C.T., & Massey, V. (1997) Biochemistry 36, 796-805] is a direct result of the loss of the serine hydroxyl moiety rather than other nonspecific active-site changes or general structural defects.
Related Citations: 
Kinetic Characterization of Wild-Type and S229A Mutant Murb: Evidence for the Role of Ser 229 as a General Acid Benson, T.E., Walsh, C.T., Massey, V. (1997) Biochemistry 36: 796
An Enzyme-Substrate Complex Involved in Bacterial Cell Wall Biosynthesis Benson, T.E., Filman, D.J., Walsh, C.T., Hogle, J.M. (1995) Nat Struct Biol 2: 644
Crystallization and Preliminary X-Ray Crystallographic Studies of Udp-N-Acetyl Enolpyruvylglucosamine Reductase Benson, T.E., Walsh, C.T., Hogle, J.M. (1994) Int Immunol 3: 1125
Overexpression, Purification, and Mechanistic Study of Udp-N-Acetylenolpyruvylglucosamine Reductase Benson, T.E., Marquardt, J.L., Marquardt, A.C., Etzkorn, F.A., Walsh, C.T. (1993) Biochemistry 32: 2024
Organizational Affiliation: 
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.