1USU

The Structure of the complex between Aha1 and HSP90


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.213 

wwPDB Validation   3D Report Full Report


This is version 1.3 of the entry. See complete history


Literature

Structural Basis for Recruitment of the ATPase Activator Aha1 to the Hsp90 Chaperone Machinery.

Meyer, P.Prodromou, C.Liao, C.Hu, B.Roe, S.M.Vaughan, C.K.Vlasic, I.Panaretou, B.Piper, P.W.Pearl, L.H.

(2004) EMBO J 23: 1402

  • DOI: 10.1038/sj.emboj.7600141
  • Primary Citation of Related Structures:  
    1USV, 1USU

  • PubMed Abstract: 
  • Hsp90 is a molecular chaperone essential for the activation and assembly of many key eukaryotic signalling and regulatory proteins. Hsp90 is assisted and regulated by co-chaperones that participate in an ordered series of dynamic multiprotein complex ...

    Hsp90 is a molecular chaperone essential for the activation and assembly of many key eukaryotic signalling and regulatory proteins. Hsp90 is assisted and regulated by co-chaperones that participate in an ordered series of dynamic multiprotein complexes, linked to Hsp90 conformationally coupled ATPase cycle. The co-chaperones Aha1 and Hch1 bind to Hsp90 and stimulate its ATPase activity. Biochemical analysis shows that this activity is dependent on the N-terminal domain of Aha1, which interacts with the central segment of Hsp90. The structural basis for this interaction is revealed by the crystal structure of the N-terminal domain (1-153) of Aha1 (equivalent to the whole of Hch1) in complex with the middle segment of Hsp90 (273-530). Structural analysis and mutagenesis show that binding of N-Aha1 promotes a conformational switch in the middle-segment catalytic loop (370-390) of Hsp90 that releases the catalytic Arg 380 and enables its interaction with ATP in the N-terminal nucleotide-binding domain of the chaperone.


    Organizational Affiliation

    Chester Beatty Laboratories, Section of Structural Biology, The Institute of Cancer Research, London, UK.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
HEAT SHOCK PROTEIN HSP82A260Saccharomyces cerevisiaeMutation(s): 0 
Find proteins for P02829 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P02829 
Go to UniProtKB:  P02829
Protein Feature View
Expand
  • Reference Sequence
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
AHA1B170Saccharomyces cerevisiaeMutation(s): 0 
Find proteins for Q12449 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore Q12449 
Go to UniProtKB:  Q12449
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download CCD File 
A
GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.15 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.213 
  • R-Value Observed: 0.213 
  • Space Group: P 1 21 1
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 58.94α = 90
b = 37.92β = 98.4
c = 111.26γ = 90
Software Package:
Software NamePurpose
CNSrefinement
MOSFLMdata reduction
SCALAdata scaling
AMoREphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-01-29
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2019-05-08
    Changes: Data collection, Experimental preparation, Other