1UI1

Crystal Structure Of Uracil-DNA Glycosylase From Thermus Thermophilus HB8


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.8 Å
  • R-Value Free: 0.276 
  • R-Value Work: 0.214 

wwPDB Validation 3D Report Full Report


This is version 2.0 of the entry. See complete history

Literature

Crystal Structure of a Family 4 Uracil-DNA Glycosylase from Thermus thermophilus HB8

Hoseki, J.Okamoto, A.Masui, R.Shibata, T.Inoue, Y.Yokoyama, S.Kuramitsu, S.

(2003) J.Mol.Biol. 333: 515-526

  • Primary Citation of Related Structures:  

  • PubMed Abstract: 
  • Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for mai ...

    Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for maintaining the integrity of genomic information. For the first time, we report the crystal structure of a family 4 UDG from Thermus thermophilus HB8 (TthUDG) complexed with uracil, solved at 1.5 angstroms resolution. As opposed to UDG enzymes in its other families, TthUDG possesses a [4Fe-4S] cluster. This iron-sulfur cluster, which is distant from the active site, interacts with loop structures and has been suggested to be unessential to the activity but necessary for stabilizing the loop structures. In addition to the iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface and the presence of proline on loops and turns is thought to contribute to the enzyme's thermostability. Despite very low levels of sequence identity with Escherichia coli and human UDGs (family 1) and E.coli G:T/U mismatch-specific DNA glycosylase (MUG) (family 2), the topology and order of secondary structures of TthUDG are similar to those of these distant relatives. Furthermore, the coordinates of the core structure formed by beta-strands are almost the same. Positive charge is distributed over the active-site groove, where TthUDG would bind DNA strands, as do UDG enzymes in other families. TthUDG recognizes uracil specifically in the same manner as does human UDG (family 1), rather than guanine in the complementary strand DNA, as does E.coli MUG (family 2). These results suggest that the mechanism by which family 4 UDGs remove uracils from DNA is similar to that of family 1 enzymes.


    Organizational Affiliation

    RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki, Sayo-gun, Hyogo 679-5148, Japan.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Uracil-DNA Glycosylase
A
205Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579)Mutation(s): 0 
Gene Names: udg
EC: 3.2.2.27
Find proteins for Q5SKC5 (Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579))
Go to UniProtKB:  Q5SKC5
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SF4
Query on SF4

Download SDF File 
Download CCD File 
A
IRON/SULFUR CLUSTER
Fe4 S4
LJBDFODJNLIPKO-VKOJMFJBAC
 Ligand Interaction
Modified Residues  1 Unique
IDChainsTypeFormula2D DiagramParent
MSE
Query on MSE
A
L-PEPTIDE LINKINGC5 H11 N O2 SeMET
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.8 Å
  • R-Value Free: 0.276 
  • R-Value Work: 0.214 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 45.502α = 90.00
b = 59.034β = 90.00
c = 81.404γ = 90.00
Software Package:
Software NamePurpose
CNSrefinement
HKL-2000data reduction
SCALEPACKdata scaling
SOLVEphasing

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2003-10-14
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance
  • Version 2.0: 2019-08-28
    Type: Atomic model, Data collection, Derived calculations