1UDE

Crystal structure of the Inorganic pyrophosphatase from the hyperthermophilic archaeon Pyrococcus horikoshii OT3


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.66 Å
  • R-Value Free: 0.277 
  • R-Value Work: 0.232 

wwPDB Validation 3D Report Full Report


This is version 1.3 of the entry. See complete history

Literature

Crystal structure of the hyperthermophilic inorganic pyrophosphatase from the archaeon Pyrococcus horikoshii.

Liu, B.Bartlam, M.Gao, R.Zhou, W.Pang, H.Liu, Y.Feng, Y.Rao, Z.

(2004) Biophys.J. 86: 420-427

  • DOI: 10.1016/S0006-3495(04)74118-1

  • PubMed Abstract: 
  • A homolog to the eubacteria inorganic pyrophosphatase (PPase, EC 3.6.1.1) was found in the genome of the hyperthermophilic archaeon Pyrococcus horikoshii. This inorganic pyrophosphatase (Pho-PPase) grows optimally at 88 degrees C. To understand the s ...

    A homolog to the eubacteria inorganic pyrophosphatase (PPase, EC 3.6.1.1) was found in the genome of the hyperthermophilic archaeon Pyrococcus horikoshii. This inorganic pyrophosphatase (Pho-PPase) grows optimally at 88 degrees C. To understand the structural basis for the thermostability of Pho-PPase, we have determined the crystal structure to 2.66 A resolution. The crystallographic asymmetric unit contains three monomers related by approximate threefold symmetry, and a hexamer is built up by twofold crystallographic symmetry. The main-chain fold of Pho-PPase is almost identical to that of the known crystal structure of the model from Sulfolobus acidocaldarius. A detailed comparison of the crystal structure of Pho-PPase with related structures from S. acidocaldarius, Thermus thermophilus, and Escherichia coli shows significant differences that may account for the difference in their thermostabilities. A reduction in thermolabile residues, additional aromatic residues, and more intimate association between subunits all contribute to the larger thermophilicity of Pho-PPase. In particular, deletions in two loops surrounding the active site help to stabilize its conformation, while ion-pair networks unique to Pho-PPase are located in the active site and near the C-terminus. The identification of structural features that make PPases more adaptable to extreme temperature should prove helpful for future biotechnology applications.


    Organizational Affiliation

    Laboratory of Structural Biology, Tsinghua University and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Inorganic pyrophosphatase
A, B, C
195Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3)Mutation(s): 0 
Gene Names: ppa
EC: 3.6.1.1
Find proteins for O59570 (Pyrococcus horikoshii (strain ATCC 700860 / DSM 12428 / JCM 9974 / NBRC 100139 / OT-3))
Go to UniProtKB:  O59570
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.66 Å
  • R-Value Free: 0.277 
  • R-Value Work: 0.232 
  • Space Group: P 21 21 2
Unit Cell:
Length (Å)Angle (°)
a = 71.827α = 90.00
b = 86.687β = 90.00
c = 92.823γ = 90.00
Software Package:
Software NamePurpose
CNSphasing
HKL-2000data reduction
HKL-2000data collection
CNSrefinement
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2004-01-20
    Type: Initial release
  • Version 1.1: 2008-04-27
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Derived calculations, Version format compliance
  • Version 1.3: 2019-11-06
    Type: Data collection, Database references