1U9L

Structural basis for a NusA- protein N interaction


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.216 
  • R-Value Observed: 0.217 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structural basis for the interaction of Escherichia coli NusA with protein N of phage lambda

Bonin, I.Muehlberger, R.Bourenkov, G.P.Huber, R.Bacher, A.Richter, G.Wahl, M.C.

(2004) Proc Natl Acad Sci U S A 101: 13762-13767

  • DOI: 10.1073/pnas.0405883101
  • Primary Citation of Related Structures:  
    1U9L

  • PubMed Abstract: 
  • The C terminus of transcription factor NusA from Escherichia coli comprises two repeat units, which bind during antitermination to protein N from phage lambda. To delineate the structural basis of the NusA-lambdaN interaction, we attempted to crystallize the NusA C-terminal repeats in complex with a lambdaN peptide (residues 34-47) ...

    The C terminus of transcription factor NusA from Escherichia coli comprises two repeat units, which bind during antitermination to protein N from phage lambda. To delineate the structural basis of the NusA-lambdaN interaction, we attempted to crystallize the NusA C-terminal repeats in complex with a lambdaN peptide (residues 34-47). The two NusA domains became proteolytically separated during crystallization, and crystals contained two copies of the first repeat unit in contact with a single lambdaN fragment. The NusA modules employ identical regions to contact the peptide but approach the ligand from opposite sides. In contrast to the alpha-helical conformation of the lambdaN N terminus in complex with boxB RNA, residues 34-40 of lambdaN remain extended upon interaction with NusA. Mutational analyses indicated that only one of the observed NusA-lambdaN interaction modes is biologically significant, supporting an equimolar ratio of NusA and lambdaN in antitermination complexes. Solution studies indicated that additional interactions are fostered by the second NusA repeat unit, consistent with known compensatory mutations in NusA and lambdaN. Contrary to the RNA polymerase alpha subunit, lambdaN binding does not stimulate RNA interaction of NusA. The results demonstrate that lambdaN serves as a scaffold to closely oppose NusA and the mRNA in antitermination complexes.


    Organizational Affiliation

    Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Transcription elongation protein nusAA, B70Escherichia coliMutation(s): 0 
Gene Names: nusA
UniProt
Find proteins for P0AFF6 (Escherichia coli (strain K12))
Explore P0AFF6 
Go to UniProtKB:  P0AFF6
Protein Feature View
Expand
  • Reference Sequence
  • Find similar proteins by:  Sequence   |   Structure
Entity ID: 2
MoleculeChainsSequence LengthOrganismDetailsImage
Lambda NC7N/AMutation(s): 0 
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
AU
Query on AU

Download Ideal Coordinates CCD File 
D [auth A]GOLD ION
Au
ZBKIUFWVEIBQRT-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Free: 0.237 
  • R-Value Work: 0.216 
  • R-Value Observed: 0.217 
  • Space Group: P 43 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 69.787α = 90
b = 69.787β = 90
c = 67.02γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
SHELXSphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-08-31
    Type: Initial release
  • Version 1.1: 2008-04-30
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance