1RQY

9-amino-[N-(2-dimethylamino)proply]-acridine-4-carboxamide bound to d(CGTACG)2


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.286 
  • R-Value Work: 0.227 
  • R-Value Observed: 0.229 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

Structure of 9-amino-[N-(2-dimethylamino)propyl]acridine-4-carboxamide bound to d(CGTACG)(2): a comparison of structures of d(CGTACG)(2) complexed with intercalatorsin the presence of cobalt.

Adams, A.Guss, J.M.Denny, W.A.Wakelin, L.P.

(2004) Acta Crystallogr D Biol Crystallogr 60: 823-828

  • DOI: https://doi.org/10.1107/S0907444904003907
  • Primary Citation of Related Structures:  
    1RQY

  • PubMed Abstract: 

    The structure of the complex formed between 9-amino-[N-(2-dimethylamino)propyl]acridine-4-carboxamide and d(CGTACG)(2) has been refined to a resolution of 1.55 A. The complex crystallized in space group C222. An asymmetric unit comprises two strands of DNA, one disordered drug molecule, two cobalt(II) ions, two magnesium ions and 32 water molecules. The DNA helices stack in continuous columns, with their four central base pairs adopting a B-like motif. The terminal G.C base pairs engage in different interactions. At one end of the duplex there is a CpG dinucleotide overlap modified by ligand intercalation and terminal cytosine exchange between symmetry-related duplexes. An intercalation complex is formed involving four DNA duplexes, four disordered ligand molecules and two pairs of base tetrads. The other end of the DNA is frayed, with the terminal guanine lying in the minor groove of the next duplex in the column. The structure is stabilized by guanine N7-cobalt(II) coordination. The structure is compared with previously published isomorphous structures of d(CGTACG)(2) complexed with intercalators in the presence of cobalt and it is concluded that the formation of this crystal form is primarily determined by DNA-DNA interactions and packing forces, rather than by special interactions between the ligand and the DNA. Given the nature of the ligands found in these complexes, the relevance of the quadruplex structure to the biological activity of those agents, known to be topoisomerase poisons, is questioned.


  • Organizational Affiliation

    School of Molecular and Microbial Biosciences, University of Sydney, NSW 2006, Australia. a.adams@mmb.usyd.edu.au


Macromolecules

Find similar nucleic acids by:  Sequence   |   3D Structure  

Entity ID: 1
MoleculeChains LengthOrganismImage
5'-D(CP*GP*TP*AP*CP*G)-3'
A, B
6N/A
Sequence Annotations
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.55 Å
  • R-Value Free: 0.286 
  • R-Value Work: 0.227 
  • R-Value Observed: 0.229 
  • Space Group: C 2 2 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 28.745α = 90
b = 52.124β = 90
c = 40.745γ = 90
Software Package:
Software NamePurpose
SHELXmodel building
SHELXL-97refinement
DENZOdata reduction
SCALEPACKdata scaling
SHELXphasing

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-05-11
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-23
    Changes: Data collection, Database references, Derived calculations, Refinement description