1QIS

ASPARTATE AMINOTRANSFERASE FROM ESCHERICHIA COLI, C191F MUTATION, WITH BOUND MALEATE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Work: 0.188 
  • R-Value Observed: 0.188 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

The Role of Residues Outside the Active Site in Catalysis: Structural Basis for Function of C191 Mutants of E. Coli Aspartate Aminotransferase

Jeffery, C.J.Gloss, L.M.Petsko, G.A.Ringe, D.

(2000) Protein Eng 13: 105

  • DOI: https://doi.org/10.1093/protein/13.2.105
  • Primary Citation of Related Structures:  
    1B4X, 1QIR, 1QIS, 1QIT, 5EAA

  • PubMed Abstract: 

    In previous kinetic studies of Escherichia coli aspartate aminotransferase, it was determined that some substitutions of conserved cysteine 191, which is located outside of the active site, altered the kinetic parameters of the enzyme (Gloss,L.M., Spencer,D. E. and Kirsch,J.F., 1996, Protein Struct. Funct. Genet., 24, 195-208). The mutations resulted in an alkaline shift of 0.6-0.8 pH units for the pK(a) of the internal aldimine between the PLP cofactor and Lys258. The change in the pK(a) affected the pH dependence of the k(cat)/K(m) (aspartate) values for the mutant enzymes. To help to understand these observations, crystal structures of five mutant forms of E.coli aspartate aminotransferase (the maleate complexes of C191S, C191F, C191Y and C191W, and C191S without maleate) were determined at about 2 A resolution in the presence of the pyridoxal phosphate cofactor. The overall three-dimensional fold of each mutant enzyme is the same as that of the wild-type protein, but there is a rotation of the mutated side chain around its C(alpha)-C(beta) bond. This side chain rotation results in a change in the pattern of hydrogen bonding connecting the mutant residue and the protonated Schiff base of the cofactor, which could account for the altered pK(a) of the Schiff base imine nitrogen that was reported previously. These results demonstrate how residues outside the active site can be important in helping determine the subtleties of the active site amino acid geometries and interactions and how mutations outside the active site can have effects on catalysis. In addition, these results help explain the surprising result previously reported that, for some mutant proteins, replacement of a buried cysteine with an aromatic side chain did not destabilize the protein fold. Instead, rotation around the C(alpha)-C(beta) bond allowed each large aromatic side chain to become buried in a nearby pocket without large changes in the enzyme's backbone geometry.


  • Organizational Affiliation

    Rosenstiel Basic Medical Sciences Research Center, MS029, Brandeis University, Waltham, MA 02454-9110, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
ASPARTATE AMINOTRANSFERASE396Escherichia coliMutation(s): 1 
EC: 2.6.1.1
UniProt
Find proteins for P00509 (Escherichia coli (strain K12))
Explore P00509 
Go to UniProtKB:  P00509
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP00509
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
PLP
Query on PLP

Download Ideal Coordinates CCD File 
B [auth A]PYRIDOXAL-5'-PHOSPHATE
C8 H10 N O6 P
NGVDGCNFYWLIFO-UHFFFAOYSA-N
MAE
Query on MAE

Download Ideal Coordinates CCD File 
C [auth A]MALEIC ACID
C4 H4 O4
VZCYOOQTPOCHFL-UPHRSURJSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.90 Å
  • R-Value Work: 0.188 
  • R-Value Observed: 0.188 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 157.3α = 90
b = 85.1β = 90
c = 78.37γ = 90
Software Package:
Software NamePurpose
X-PLORrefinement
R-AXISdata reduction
R-AXISdata scaling
X-PLORphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2000-06-05
    Type: Initial release
  • Version 1.1: 2011-05-08
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-07-05
    Changes: Data collection
  • Version 1.4: 2023-12-13
    Changes: Data collection, Database references, Derived calculations, Refinement description