1Q8L

Second Metal Binding Domain of the Menkes ATPase


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structure and metal binding studies of the second copper binding domain of the Menkes ATPase.

Jones, C.E.Daly, N.L.Cobine, P.A.Craik, D.J.Dameron, C.T.

(2003) J Struct Biol 143: 209-218

  • DOI: 10.1016/j.jsb.2003.08.008
  • Primary Citation of Related Structures:  
    1Q8L

  • PubMed Abstract: 
  • Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved ...

    Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved. To investigate copper binding to a family of structurally related copper-binding proteins, we have characterised the second Menkes N-terminal domain (MNKr2). The structure, determined using 1H and 15N heteronuclear NMR, of the reduced form of MNKr2 has revealed two alpha-helices lying over a single beta-sheet and shows that the binding site, a Cys(X)2Cys pair, is located on an exposed loop. 1H-15N HSQC experiments demonstrate that binding of Cu(I) causes changes that are localised to conserved residues adjacent to the metal binding site. Residues in this area are important to the delivery of copper by the structurally related Cu(I) chaperones. Complementary site-directed mutagenesis of the adjacent residues has been used to probe the structural roles of conserved residues.


    Organizational Affiliation

    The National Research Centre for Environmental Toxicology, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld 4108, Australia.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Copper-transporting ATPase 1A84Homo sapiensMutation(s): 0 
Gene Names: ATP7A OR MNK OR MC1ATP7AMC1MNK
EC: 7.2.2.8
UniProt & NIH Common Fund Data Resources
Find proteins for Q04656 (Homo sapiens)
Explore Q04656 
Go to UniProtKB:  Q04656
PHAROS:  Q04656
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 50 
  • Conformers Submitted: 20 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 1Q8L Olderado

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2004-01-20
    Type: Initial release
  • Version 1.1: 2008-04-29
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance