Solution structure of RicC3, a 2S albumin storage protein from Ricinus communis.
Pantoja-Uceda, D., Bruix, M., Gimenez-Gallego, G., Rico, M., Santoro, J.(2003) Biochemistry 42: 13839-13847
- PubMed: 14636051 
- DOI: https://doi.org/10.1021/bi0352217
- Primary Citation of Related Structures:  
1PSY - PubMed Abstract: 
The three-dimensional structure in aqueous solution of recombinant (15)N labeled RicC3, a 2S albumin protein from the seeds of castor bean (Ricinus communis), has been determined by NMR methods. The computed structures were based on 1564 upper limit distance constraints derived from NOE cross-correlation intensities measured in the 2D-NOESY and 3D-HSQC-NOESY experiments, 70 phi torsion angle constraints obtained from (3)J(HNH)(alpha) couplings measured in the HNHA experiment, and 30 psi torsion angle constraints derived from (3)J(H)(alpha)(Ni+1) couplings measured in the HNHB experiment. The computed structures showed a RMSD radius of 0.64 A for the structural core. The resulting structure consists of five amphipatic helices arranged in a right-handed super helix, a folding motif first observed in nonspecific lipid transfer proteins. Different than the latter, RicC3 does have not an internal cavity, a fact that can be related to the exchange in the pairing of disulfide bridges in the segment.CXC. Previous attempts to determine high resolution structures of a 2S albumin protein by either X-ray crystallography or NMR methods failed because of the heterogeneity of the protein prepared from natural sources. Both 2S albumins and nonspecific lipid transfer proteins belong to the prolamine superfamily, some of whose members are food allergens. The solution structure for recombinant RicC3 determined here is a suitable representative structure for the broad family of seed 2S albumin proteins, which may help to establish meaningful relationships between structure and allergenicity. RicC3 is also the peptidic component of the immunomodulator Inmunoferon, a widely used pharmaceutical product, and its structure is expected to help understand its pharmaceutical activity.
Organizational Affiliation: 
Instituto de Química Física Rocasolano, CSIC, Serrano 119, Madrid 28006, Spain.