1MN4

Structure of Ndt80 (Residues 59-340) DNA-binding domain core


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.226 
  • R-Value Observed: 0.229 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structure of the sporulation-specific transcription factor Ndt80 bound to DNA

Lamoureux, J.S.Stuart, D.Tsang, R.Wu, C.Glover, J.N.M.

(2002) EMBO J 21: 5721-5732

  • DOI: 10.1093/emboj/cdf572
  • Primary Citation of Related Structures:  
    1MN4, 1MNN

  • PubMed Abstract: 
  • Progression through the middle phase of sporulation in Saccharomyces cerevisiae is promoted by the successful completion of recombination at the end of prophase I. Completion of meiotic recombination allows the activation of the sporulation-specific transcription factor Ndt80, which binds to a specific DNA sequence, the middle sporulation element (MSE), and activates approximately 150 genes to enable progression through meiosis ...

    Progression through the middle phase of sporulation in Saccharomyces cerevisiae is promoted by the successful completion of recombination at the end of prophase I. Completion of meiotic recombination allows the activation of the sporulation-specific transcription factor Ndt80, which binds to a specific DNA sequence, the middle sporulation element (MSE), and activates approximately 150 genes to enable progression through meiosis. Here, we isolate the DNA-binding domain of Ndt80 and determine its crystal structure both free and in complex with an MSE-containing DNA. The structure reveals that Ndt80 is a member of the Ig-fold family of transcription factors. The structure of the DNA-bound form, refined at 1.4 A, reveals an unexpected mode of recognition of 5'-pyrimidine- guanine-3' dinucleotide steps by arginine residues that simultaneously recognize the 3'-guanine base through hydrogen bond interactions and the 5'-pyrimidine through stacking/van der Waals interactions. Analysis of the DNA-binding affinities of MSE mutants demonstrates the central importance of these interactions, and of the AT-rich portion of the MSE. Functional similarities between Ndt80 and the Caenorhabditis elegans p53 homolog suggest an evolutionary link between Ndt80 and the p53 family.


    Organizational Affiliation

    Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
NDT80 PROTEINA282Saccharomyces cerevisiaeMutation(s): 0 
Gene Names: NDT80
UniProt
Find proteins for P38830 (Saccharomyces cerevisiae (strain ATCC 204508 / S288c))
Explore P38830 
Go to UniProtKB:  P38830
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.20 Å
  • R-Value Free: 0.268 
  • R-Value Work: 0.226 
  • R-Value Observed: 0.229 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 35.88α = 90
b = 41.93β = 90
c = 164.5γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
SHARPphasing
CNSrefinement

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-11-06
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance