1MMG

X-RAY STRUCTURES OF THE MGADP, MGATPGAMMAS, AND MGAMPPNP COMPLEXES OF THE DICTYOSTELIUM DISCOIDEUM MYOSIN MOTOR DOMAIN


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Work: 0.198 

wwPDB Validation   3D Report Full Report


Ligand Structure Quality Assessment 


This is version 1.3 of the entry. See complete history


Literature

X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain.

Gulick, A.M.Bauer, C.B.Thoden, J.B.Rayment, I.

(1997) Biochemistry 36: 11619-11628

  • DOI: https://doi.org/10.1021/bi9712596
  • Primary Citation of Related Structures:  
    1MMA, 1MMG, 1MMN

  • PubMed Abstract: 

    The three-dimensional structures of the truncated myosin head from Dictyostelium discoideum myosin II (S1dC) complexed with MgAMPPNP, MgATPgammaS, and MgADP are reported at 2.1, 1.9, and 2.1 A resolution, respectively. Crystals were obtained by cocrystallization and were isomorphous with respect to those of S1dC. MgADP.BeFx [Fisher, A. J., et al. (1995) Biochemistry 34, 8960-8972]. In all three structures, the electron density for the entire nucleotide was clearly discernible. The overall structures of all three complexes are very similar to that of the beryllium fluoride complex which suggests that the differences in the physiological effects of ATPgammaS and AMPPNP are due to the changes in the equilibrium between the actin-bound and actin-free states of myosin caused by the lower affinity of AMPPNP for myosin. In S1dC.MgAMPPNP, the presence of the bridging nitrogen prompts the side chain of Asn233 to rotate which disrupts the hydrogen bonding pattern in the nucleotide binding pocket and alters the water structure surrounding the ribose hydroxyl groups. It appears that this change is responsible for the reduced affinity of AMPPNP for myosin relative to ATPgammaS. In contrast to the G-proteins, there is no major change in the conformation of the ligands that coordinate the nucleotide in S1dC.MgADP. This is due to three water molecules that adopt the approximate positions of the three oxygens on the gamma-phosphate and maintain the interactions with the Mg2+ ion and protein molecule. Interestingly, the thiophosphate group is evident in S1dC.MgATPgammaS even though it is slowly hydrolyzed by myosin. This suggests that the conformation observed here and in chicken skeletal myosin subfragment-1 [Rayment, I., et al. (1993) Science 261, 50-58] is unable to hydrolyze ATP and represents the structure of the prehydrolysis weak binding state of myosin.


  • Organizational Affiliation

    Institute for Enzyme Research and Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53705, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
MYOSIN762Dictyostelium discoideumMutation(s): 0 
UniProt
Find proteins for P08799 (Dictyostelium discoideum)
Explore P08799 
Go to UniProtKB:  P08799
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupP08799
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
AGS
Query on AGS

Download Ideal Coordinates CCD File 
C [auth A]PHOSPHOTHIOPHOSPHORIC ACID-ADENYLATE ESTER
C10 H16 N5 O12 P3 S
NLTUCYMLOPLUHL-KQYNXXCUSA-N
MG
Query on MG

Download Ideal Coordinates CCD File 
B [auth A]MAGNESIUM ION
Mg
JLVVSXFLKOJNIY-UHFFFAOYSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Work: 0.198 
  • Space Group: P 21 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 103.8α = 90
b = 179.9β = 90
c = 54γ = 90
Software Package:
Software NamePurpose
AMoREphasing
TNTrefinement

Structure Validation

View Full Validation Report



Ligand Structure Quality Assessment 


Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 1997-12-03
    Type: Initial release
  • Version 1.1: 2008-03-24
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2023-08-09
    Changes: Database references, Derived calculations, Refinement description