1MIH

A ROLE FOR CHEY GLU 89 IN CHEZ-MEDIATED DEPHOSPHORYLATION OF THE E. COLI CHEMOTAXIS RESPONSE REGULATOR CHEY


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.277 
  • R-Value Work: 0.226 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

CheZ-mediated dephosphorylation of the Escherichia coli chemotaxis response regulator CheY: role for CheY glutamate 89.

Silversmith, R.E.Guanga, G.P.Betts, L.Chu, C.Zhao, R.Bourret, R.B.

(2003) J.Bacteriol. 185: 1495-1502

  • DOI: 10.1128/jb.185.5.1495-1502.2003

  • PubMed Abstract: 
  • The swimming behavior of Escherichia coli at any moment is dictated by the intracellular concentration of the phosphorylated form of the chemotaxis response regulator CheY, which binds to the base of the flagellar motor. CheY is phosphorylated on Asp ...

    The swimming behavior of Escherichia coli at any moment is dictated by the intracellular concentration of the phosphorylated form of the chemotaxis response regulator CheY, which binds to the base of the flagellar motor. CheY is phosphorylated on Asp57 by the sensor kinase CheA and dephosphorylated by CheZ. Previous work (Silversmith et al., J. Biol. Chem. 276:18478, 2001) demonstrated that replacement of CheY Asn59 with arginine resulted in extreme resistance to dephosphorylation by CheZ despite proficient binding to CheZ. Here we present the X-ray crystal structure of CheYN59R in a complex with Mn(2+) and the stable phosphoryl analogue BeF(3)(-). The overall folding and active site architecture are nearly identical to those of the analogous complex containing wild-type CheY. The notable exception is the introduction of a salt bridge between Arg59 (on the beta3alpha3 loop) and Glu89 (on the beta4alpha4 loop). Modeling this structure into the (CheY-BeF(3)(-)-Mg(2+))(2)CheZ(2) structure demonstrated that the conformation of Arg59 should not obstruct entry of the CheZ catalytic residue Gln147 into the active site of CheY, eliminating steric interference as a mechanism for CheZ resistance. However, both CheYE89A and CheYE89Q, like CheYN59R, conferred clockwise flagellar rotation phenotypes in strains which lacked wild-type CheY and displayed considerable (approximately 40-fold) resistance to dephosphorylation by CheZ. CheYE89A and CheYE89Q had autophosphorylation and autodephosphorylation properties similar to those of wild-type CheY and could bind to CheZ with wild-type affinity. Therefore, removal of Glu89 resulted specifically in CheZ resistance, suggesting that CheY Glu89 plays a role in CheZ-mediated dephosphorylation. The CheZ resistance of CheYN59R can thus be largely explained by the formation of the salt bridge between Arg59 and Glu89, which prevents Glu89 from executing its role in catalysis.


    Organizational Affiliation

    Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Chemotaxis protein cheY
A, B
129Escherichia coli (strain K12)Mutation(s): 1 
Gene Names: cheY
Find proteins for P0AE67 (Escherichia coli (strain K12))
Go to UniProtKB:  P0AE67
Small Molecules
Ligands 3 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
MN
Query on MN

Download SDF File 
Download CCD File 
A, B
MANGANESE (II) ION
Mn
WAEMQWOKJMHJLA-UHFFFAOYSA-N
 Ligand Interaction
SO4
Query on SO4

Download SDF File 
Download CCD File 
A, B
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
BEF
Query on BEF

Download SDF File 
Download CCD File 
A, B
BERYLLIUM TRIFLUORIDE ION
Be F3
OGIAHMCCNXDTIE-UHFFFAOYSA-K
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.7 Å
  • R-Value Free: 0.277 
  • R-Value Work: 0.226 
  • Space Group: P 21 21 21
Unit Cell:
Length (Å)Angle (°)
a = 53.504α = 90.00
b = 53.615β = 90.00
c = 160.890γ = 90.00
Software Package:
Software NamePurpose
DENZOdata reduction
AMoREphasing
CNSrefinement
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2003-04-08
    Type: Initial release
  • Version 1.1: 2008-04-28
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance