1M6T

CRYSTAL STRUCTURE OF B562RIL, A REDESIGNED FOUR HELIX BUNDLE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.81 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.210 

wwPDB Validation 3D Report Full Report


This is version 1.2 of the entry. See complete history

Literature

Redesign of a Four-Helix Bundle Protein by Phage Display Coupled with Proteolysis and Structural Characterization by NMR and X-ray Crystallography

Chu, R.Takei, J.Knowlton, J.R.Andrykovitch, M.Pei, W.Kajava, A.V.Steinbach, P.J.Ji, X.Bai, Y.

(2002) J.Mol.Biol. 323: 253-262


  • PubMed Abstract: 
  • To test whether it is practical to use phage display coupled with proteolysis for protein design, we used this approach to convert a partially unfolded four-helix bundle protein, apocytochrome b(562), to a stably folded four-helix bundle protein. Fou ...

    To test whether it is practical to use phage display coupled with proteolysis for protein design, we used this approach to convert a partially unfolded four-helix bundle protein, apocytochrome b(562), to a stably folded four-helix bundle protein. Four residues expected to form a hydrophobic core were mutated. One residue was changed to Trp to provide a fluorescence probe for studying the protein's physical properties and to partially fill the void left by the heme. The other three positions were randomly mutated. In addition, another residue in the region to be redesigned was substituted with Arg to provide a specific cutting site for protease Arg-c. This library of mutants was displayed on the surface of phage and challenged with protease Arg-c to select stably folded proteins. The consensus sequence that emerged from the selection included hydrophobic residues at only one of the three positions and non-hydrophobic residues at the other two. Nevertheless, the selected proteins were thermodynamically very stable. The structure of a selected protein was characterized using multi-dimensional NMR. All four helices were formed in the structure. Further, site-directed mutagenesis was used to change one of the two non-hydrophobic residues to a hydrophobic residue, which increased the stability of the protein, indicating that the selection result was not based solely on the protein's global stability and that local structural characteristics may also govern the selection. This conclusion is supported by the crystal structure of another mutant that has two hydrophobic residues substituted for the two non-hydrophobic residues. These results suggest that the hydrophobic interactions in the core are not sufficient to dictate the selection and that the location of the cutting site of the protease also influences the selection of structures.


    Organizational Affiliation

    Laboratory of Biochemistry, Building 37, Room 6114E, National Cancer Institute, NIH, Bethesda, MD 20892-4255, USA.




Macromolecules

Find similar proteins by: Sequence  |  Structure

Entity ID: 1
MoleculeChainsSequence LengthOrganismDetails
Soluble cytochrome b562
A
106Escherichia coliMutations: L106R, I102H, W7M
Gene Names: cybC
Find proteins for P0ABE7 (Escherichia coli)
Go to UniProtKB:  P0ABE7
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
SO4
Query on SO4

Download SDF File 
Download CCD File 
A
SULFATE ION
O4 S
QAOWNCQODCNURD-UHFFFAOYSA-L
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.81 Å
  • R-Value Free: 0.248 
  • R-Value Work: 0.210 
  • Space Group: C 2 2 21
Unit Cell:
Length (Å)Angle (°)
a = 41.300α = 90.00
b = 52.340β = 90.00
c = 93.800γ = 90.00
Software Package:
Software NamePurpose
HKL-2000data collection
CNSrefinement
HKL-2000data reduction
CNSphasing
SCALEPACKdata scaling

Structure Validation

View Full Validation Report or Ramachandran Plots



Entry History 

Deposition Data

Revision History 

  • Version 1.0: 2002-11-06
    Type: Initial release
  • Version 1.1: 2008-04-28
    Type: Version format compliance
  • Version 1.2: 2011-07-13
    Type: Version format compliance