1M4W

Thermophilic b-1,4-xylanase from Nonomuraea flexuosa


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.209 
  • R-Value Work: 0.146 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history


Literature

Three-dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum and Nonomuraea flexuosa. Comparison of twelve xylanases in relation to their thermal stability.

Hakulinen, N.Turunen, O.Leisola, M.Rouvinen, J.

(2003) Eur J Biochem 270: 1399-1412

  • DOI: 10.1046/j.1432-1033.2003.03496.x
  • Primary Citation of Related Structures:  
    1H1A, 1M4W

  • PubMed Abstract: 
  • The crystal structures of thermophilic xylanases from Chaetomium thermophilum and Nonomuraea flexuosa were determined at 1.75 and 2.1 A resolution, respectively. Both enzymes have the overall fold typical to family 11 xylanases with two highly twisted beta-sheets forming a large cleft ...

    The crystal structures of thermophilic xylanases from Chaetomium thermophilum and Nonomuraea flexuosa were determined at 1.75 and 2.1 A resolution, respectively. Both enzymes have the overall fold typical to family 11 xylanases with two highly twisted beta-sheets forming a large cleft. The comparison of 12 crystal structures of family 11 xylanases from both mesophilic and thermophilic organisms showed that the structures of different xylanases are very similar. The sequence identity differences correlated well with the structural differences. Several minor modifications appeared to be responsible for the increased thermal stability of family 11 xylanases: (a) higher Thr : Ser ratio (b) increased number of charged residues, especially Arg, resulting in enhanced polar interactions, and (c) improved stabilization of secondary structures involved the higher number of residues in the beta-strands and stabilization of the alpha-helix region. Some members of family 11 xylanases have a unique strategy to improve their stability, such as a higher number of ion pairs or aromatic residues on protein surface, a more compact structure, a tighter packing, and insertions at some regions resulting in enhanced interactions.


    Organizational Affiliation

    Department of Chemistry, University of Joensuu, Finland; Helsinki University of Technology, Finland. Nina.Hakulinen@joensuu.fi



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
endoxylanaseA197Thermopolyspora flexuosaMutation(s): 0 
Gene Names: xyn11AFHX40_0105
EC: 3.2.1.8
UniProt
Find proteins for Q8GMV7 (Thermopolyspora flexuosa)
Explore Q8GMV7 
Go to UniProtKB:  Q8GMV7
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupQ8GMV7
Protein Feature View
Expand
  • Reference Sequence
Oligosaccharides

Help

Entity ID: 2
MoleculeChainsChain Length2D DiagramGlycosylation3D Interactions
alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoseB 4N-Glycosylation Oligosaccharides Interaction
Glycosylation Resources
GlyTouCan:  G22573RC
GlyCosmos:  G22573RC
GlyGen:  G22573RC
Small Molecules
Ligands 2 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
GOL
Query on GOL

Download Ideal Coordinates CCD File 
D [auth A]GLYCEROL
C3 H8 O3
PEDCQBHIVMGVHV-UHFFFAOYSA-N
 Ligand Interaction
ACT
Query on ACT

Download Ideal Coordinates CCD File 
C [auth A]ACETATE ION
C2 H3 O2
QTBSBXVTEAMEQO-UHFFFAOYSA-M
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 2.10 Å
  • R-Value Free: 0.209 
  • R-Value Work: 0.146 
  • Space Group: P 61
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 37.034α = 90
b = 37.034β = 90
c = 191.808γ = 120
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
AMoREphasing
CNSrefinement

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2003-07-08
    Type: Initial release
  • Version 1.1: 2008-04-28
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Non-polymer description, Version format compliance
  • Version 1.3: 2017-02-01
    Changes: Structure summary
  • Version 1.4: 2018-04-04
    Changes: Data collection
  • Version 2.0: 2020-07-29
    Type: Remediation
    Reason: Carbohydrate remediation
    Changes: Atomic model, Data collection, Derived calculations, Structure summary