The 1.35 A structure of cadmium-substituted TM-3, a snake-venom metalloproteinase from Taiwan habu: elucidation of a TNFalpha-converting enzyme-like active-site structure with a distorted octahedral geometry of cadmium.
Huang, K.F., Chiou, S.H., Ko, T.P., Yuann, J.M., Wang, A.H.(2002) Acta Crystallogr D Biol Crystallogr 58: 1118-1128
- PubMed: 12077431 
- DOI: https://doi.org/10.1107/s090744490200656x
- Primary Citation of Related Structures:  
1KUF - PubMed Abstract: 
The crystal structure of TM-3, a small snake-venom metalloproteinase (SVMP) isolated from Taiwan habu (Trimeresurus mucrosquamatus), was determined at 1.35 A resolution with resultant R and R(free) values of 0.181 and 0.204, respectively. The overall structure of TM-3 is an oblate ellipsoid that contains three disulfide crosslinks, Cys118-Cys197, Cys159-Cys181 and Cys161-Cys164. It exhibits the typical structural features of SVMPs and is closely related to the structure of the catalytic proteinase domain of TNFalpha-converting enzyme (TACE). In the present structure, the essential catalytic zinc ion was found to be replaced by a cadmium ion during crystallization, as revealed by atomic absorption analysis and X-ray data. This cadmium ion is bound to six ligands, including three conserved histidines and three water molecules, displaying the coordination geometry of a distorted octahedron. One of the water molecules is proposed to play the role of stabilizing the tetrahedral intermediate during the catalysis of SVMPs. The putative S'(1) specificity pocket of TM-3 is relatively shallow, in contrast to the deep pockets of adamalysin II, atrolysin C and H(2)-proteinase, but is similar to those in acutolysin A and TACE. The shallow pocket is a consequence of the presence of the non-conserved disulfide bond Cys159-Cys181 and the residue Gln174 at the bottom of the S'(1) pocket. The results indicate that the active-site structure of TM-3, among the know structures of SVMPs examined thus far, is most similar to that of TACE owing to their close disulfide configurations and the S'(1) specificity pocket.
Organizational Affiliation: 
Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.