1K8H

NMR Structure of Small Protein B (SmpB) from Aquifex aeolicus


Experimental Data Snapshot

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Structure of small protein B: the protein component of the tmRNA-SmpB system for ribosome rescue.

Dong, G.Nowakowski, J.Hoffman, D.W.

(2002) EMBO J 21: 1845-1854

  • DOI: 10.1093/emboj/21.7.1845
  • Primary Citation of Related Structures:  
    1K8H

  • PubMed Abstract: 
  • Small protein B (SmpB) is an essential component of the highly conserved tmRNA-SmpB system that has the dual function of releasing stalled ribosomes from damaged messenger RNAs and targeting incompletely synthesized protein fragments for degradation. Nuclear magnetic resonance (NMR) analysis of SmpB from Aquifex aeolicus revealed an antiparallel beta-barrel structure, with three helices packed outside the core of the barrel ...

    Small protein B (SmpB) is an essential component of the highly conserved tmRNA-SmpB system that has the dual function of releasing stalled ribosomes from damaged messenger RNAs and targeting incompletely synthesized protein fragments for degradation. Nuclear magnetic resonance (NMR) analysis of SmpB from Aquifex aeolicus revealed an antiparallel beta-barrel structure, with three helices packed outside the core of the barrel. While the overall structure of SmpB appears to be unique, the structure does contain an embedded oligonucleotide binding fold; in this respect SmpB has similarity to several other RNA-binding proteins that are known to be associated with translation, including IF1, ribosomal protein S17 and the N-terminal domain of aspartyl tRNA synthetase. Conserved amino acids on the protein surface that are most likely to directly interact with the tmRNA were identified. The presence of widely separated clusters of conserved amino acids suggests that SmpB could function either by stabilizing two distal regions of the tmRNA, or by facilitating an interaction between the tmRNA and another component of the translational apparatus.


    Organizational Affiliation

    Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
Small protein BA133Aquifex aeolicusMutation(s): 0 
UniProt
Find proteins for O66640 (Aquifex aeolicus (strain VF5))
Explore O66640 
Go to UniProtKB:  O66640
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: SOLUTION NMR
  • Conformers Calculated: 200 
  • Conformers Submitted: 10 
  • Selection Criteria: structures with the lowest energy 
  • OLDERADO: 1K8H Olderado

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-03-20
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance