1K6K

Crystal Structure of ClpA, an AAA+ Chaperone-like Regulator of ClpAP protease implication to the functional difference of two ATPase domains


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.214 

wwPDB Validation   3D Report Full Report


This is version 1.2 of the entry. See complete history


Literature

Crystal structure of ClpA, an HSP100 chaperone and regulator of ClpAP protease

Guo, F.Maurizi, M.R.Esser, L.Xia, D.

(2002) J Biol Chem 277: 46743-46752

  • DOI: 10.1074/jbc.M207796200
  • Primary Citation of Related Structures:  
    1K6K, 1KSF

  • PubMed Abstract: 
  • Escherichia coli ClpA, an Hsp100/Clp chaperone and an integral component of the ATP-dependent ClpAP protease, participates in regulatory protein degradation and the dissolution and degradation of protein aggregates. The crystal structure of the ClpA subunit reveals an N-terminal domain with pseudo-twofold symmetry and two AAA(+) modules (D1 and D2) each consisting of a large and a small sub-domain with ADP bound in the sub-domain junction ...

    Escherichia coli ClpA, an Hsp100/Clp chaperone and an integral component of the ATP-dependent ClpAP protease, participates in regulatory protein degradation and the dissolution and degradation of protein aggregates. The crystal structure of the ClpA subunit reveals an N-terminal domain with pseudo-twofold symmetry and two AAA(+) modules (D1 and D2) each consisting of a large and a small sub-domain with ADP bound in the sub-domain junction. The N-terminal domain interacts with the D1 domain in a manner similar to adaptor-binding domains of other AAA(+) proteins. D1 and D2 are connected head-to-tail consistent with a cooperative and vectorial translocation of protein substrates. In a planar hexamer model of ClpA, built by assembling ClpA D1 and D2 into homohexameric rings of known structures of AAA(+) modules, the differences in D1-D1 and D2-D2 interfaces correlate with their respective contributions to hexamer stability and ATPase activity.


    Organizational Affiliation

    Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
ATP-DEPENDENT CLP PROTEASE ATP-BINDING SUBUNIT CLPAA143Escherichia coliMutation(s): 0 
UniProt
Find proteins for P0ABH9 (Escherichia coli (strain K12))
Explore P0ABH9 
Go to UniProtKB:  P0ABH9
Protein Feature View
Expand
  • Reference Sequence
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.80 Å
  • R-Value Free: 0.263 
  • R-Value Work: 0.214 
  • Space Group: P 21 21 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 36.021α = 90
b = 51.965β = 90
c = 65.1γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
CNSrefinement
CNSphasing

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2002-09-27
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance