1J8F

HUMAN SIRT2 HISTONE DEACETYLASE


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.260 
  • R-Value Work: 0.235 

wwPDB Validation   3D Report Full Report


This is version 2.0 of the entry. See complete history

Re-refinement Note

A newer entry is available that reflects an alternative modeling of the original data: 3ZGO


Literature

Structure of the histone deacetylase SIRT2.

Finnin, M.S.Donigian, J.R.Pavletich, N.P.

(2001) Nat Struct Biol 8: 621-625

  • DOI: 10.1038/89668
  • Primary Citation of Related Structures:  
    1J8F

  • PubMed Abstract: 
  • Sir2 is an NAD-dependent histone deacetylase that mediates transcriptional silencing at mating-type loci, telomeres and ribosomal gene clusters, and has a critical role in the determination of life span in yeast and Caenorhabditis elegans. The 1.7 A crystal structure of the 323 amino acid catalytic core of human SIRT2, a homolog of yeast Sir2, reveals an NAD-binding domain, which is a variant of the Rossmann fold, and a smaller domain composed of a helical module and a zinc-binding module ...

    Sir2 is an NAD-dependent histone deacetylase that mediates transcriptional silencing at mating-type loci, telomeres and ribosomal gene clusters, and has a critical role in the determination of life span in yeast and Caenorhabditis elegans. The 1.7 A crystal structure of the 323 amino acid catalytic core of human SIRT2, a homolog of yeast Sir2, reveals an NAD-binding domain, which is a variant of the Rossmann fold, and a smaller domain composed of a helical module and a zinc-binding module. A conserved large groove at the interface of the two domains is the likely site of catalysis based on mutagenesis. Intersecting this large groove, there is a pocket formed by the helical module. The pocket is lined with hydrophobic residues conserved within each of the five Sir2 classes, suggesting that it is a class-specific protein-binding site.


    Organizational Affiliation

    Cellular Biochemistry and Biophysics Program, and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.



Macromolecules
Find similar proteins by:  (by identity cutoff)  |  Structure
Entity ID: 1
MoleculeChainsSequence LengthOrganismDetailsImage
SIRTUIN 2, ISOFORM 1A, B, C323Homo sapiensMutation(s): 0 
Gene Names: SIRT2SIR2LSIR2L2
EC: 2.3.1.286
UniProt & NIH Common Fund Data Resources
Find proteins for Q8IXJ6 (Homo sapiens)
Explore Q8IXJ6 
Go to UniProtKB:  Q8IXJ6
PHAROS:  Q8IXJ6
Protein Feature View
Expand
  • Reference Sequence
Small Molecules
Ligands 1 Unique
IDChainsName / Formula / InChI Key2D Diagram3D Interactions
ZN
Query on ZN

Download Ideal Coordinates CCD File 
D [auth A], E [auth B], F [auth C]ZINC ION
Zn
PTFCDOFLOPIGGS-UHFFFAOYSA-N
 Ligand Interaction
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.70 Å
  • R-Value Free: 0.260 
  • R-Value Work: 0.235 
  • Space Group: C 2 2 21
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 78.943α = 90
b = 119.07β = 90
c = 218.22γ = 90
Software Package:
Software NamePurpose
DENZOdata reduction
SCALEPACKdata scaling
MLPHAREphasing
CNSrefinement

Structure Validation

View Full Validation Report




Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-07-06
    Type: Initial release
  • Version 1.1: 2007-10-21
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Derived calculations, Version format compliance
  • Version 2.0: 2019-12-25
    Changes: Advisory, Atomic model, Data collection, Derived calculations