1I0S

ARCHAEOGLOBUS FULGIDUS FERRIC REDUCTASE COMPLEX WITH NADP+


Experimental Data Snapshot

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.192 

Starting Model: experimental
View more details

wwPDB Validation   3D Report Full Report


This is version 1.4 of the entry. See complete history


Literature

Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.

Chiu, H.J.Johnson, E.Schroder, I.Rees, D.C.

(2001) Structure 9: 311-319

  • DOI: https://doi.org/10.1016/s0969-2126(01)00589-5
  • Primary Citation of Related Structures:  
    1I0R, 1I0S

  • PubMed Abstract: 

    Studies performed within the last decade have indicated that microbial reduction of Fe(III) to Fe(II) is a biologically significant process. The ferric reductase (FeR) from Archaeoglobus fulgidus is the first reported archaeal ferric reductase and it catalyzes the flavin-mediated reduction of ferric iron complexes using NAD(P)H as the electron donor. Based on its catalytic activity, the A. fulgidus FeR resembles the bacterial and eukaryotic assimilatory type of ferric reductases. However, the high cellular abundance of the A. fulgidus FeR (approximately 0.75% of the total soluble protein) suggests a catabolic role for this enzyme as the terminal electron acceptor in a ferric iron-based respiratory pathway [1]. The crystal structure of recombinant A. fulgidus FeR containing a bound FMN has been solved at 1.5 A resolution by multiple isomorphous replacement/ anomalous diffraction (MIRAS) phasing methods, and the NADP+- bound complex of FeR was subsequently determined at 1.65 A resolution. FeR consists of a dimer of two identical subunits, although only one subunit has been observed to bind the redox cofactors. Each subunit is organized around a six-stranded antiparallel beta barrel that is homologous to the FMN binding protein from Desulfovibrio vulgaris. This fold has been shown to be related to a circularly permuted version of the flavin binding domain of the ferredoxin reductase superfamily. The A. fulgidus ferric reductase is further distinguished from the ferredoxin reductase superfamily by the absence of a Rossmann fold domain that is used to bind the NAD(P)H. Instead, FeR uses its single domain to provide both the flavin and the NAD(P)H binding sites. Potential binding sites for ferric iron complexes are identified near the cofactor binding sites. The work described here details the structures of the enzyme-FMN, enzyme-FMN-NADP+, and possibly the enzyme-FMN-iron intermediates that are present during the reaction mechanism. This structural information helps identify roles for specific residues during the reduction of ferric iron complexes by the A. fulgidus FeR.


  • Organizational Affiliation

    Division of Chemistry and Chemical Engineering, California Institute of Technology, 91125, USA.


Macromolecules
Find similar proteins by:  (by identity cutoff)  |  3D Structure
Entity ID: 1
MoleculeChains Sequence LengthOrganismDetailsImage
CONSERVED HYPOTHETICAL PROTEIN
A, B
169Archaeoglobus fulgidusMutation(s): 0 
UniProt
Find proteins for O29428 (Archaeoglobus fulgidus (strain ATCC 49558 / DSM 4304 / JCM 9628 / NBRC 100126 / VC-16))
Explore O29428 
Go to UniProtKB:  O29428
Entity Groups  
Sequence Clusters30% Identity50% Identity70% Identity90% Identity95% Identity100% Identity
UniProt GroupO29428
Sequence Annotations
Expand
  • Reference Sequence
Small Molecules
Ligands 2 Unique
IDChains Name / Formula / InChI Key2D Diagram3D Interactions
NAP
Query on NAP

Download Ideal Coordinates CCD File 
D [auth A]NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE
C21 H28 N7 O17 P3
XJLXINKUBYWONI-NNYOXOHSSA-N
FMN
Query on FMN

Download Ideal Coordinates CCD File 
C [auth A]FLAVIN MONONUCLEOTIDE
C17 H21 N4 O9 P
FVTCRASFADXXNN-SCRDCRAPSA-N
Experimental Data & Validation

Experimental Data

  • Method: X-RAY DIFFRACTION
  • Resolution: 1.65 Å
  • R-Value Free: 0.215 
  • R-Value Work: 0.191 
  • R-Value Observed: 0.192 
  • Space Group: P 41 21 2
Unit Cell:
Length ( Å )Angle ( ˚ )
a = 56.047α = 90
b = 56.047β = 90
c = 212.969γ = 90
Software Package:
Software NamePurpose
CNSrefinement
DENZOdata reduction
SCALEPACKdata scaling
CNSphasing

Structure Validation

View Full Validation Report



Entry History 

Deposition Data

Revision History  (Full details and data files)

  • Version 1.0: 2001-05-02
    Type: Initial release
  • Version 1.1: 2008-04-27
    Changes: Version format compliance
  • Version 1.2: 2011-07-13
    Changes: Version format compliance
  • Version 1.3: 2017-02-08
    Changes: Structure summary
  • Version 1.4: 2023-08-09
    Changes: Data collection, Database references, Derived calculations, Refinement description